Lösung 1.3:4c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.3:4c moved to Solution 1.3:4c: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
The whole expression consists of factors having a base of
-
<center> [[Image:1_3_4c.gif]] </center>
+
<math>5</math>;
-
{{NAVCONTENT_STOP}}
+
 
 +
so the power rules can be use to
 +
simplify the expression first:
 +
 
 +
 
 +
<math>\begin{align}
 +
& \frac{5^{12}}{5^{-4}}\centerdot \left( 5^{2} \right)^{-6}=\frac{5^{12}}{5^{-4}}\centerdot 5^{2\centerdot \left( -6 \right)}=\frac{5^{12}}{5^{-4}}\centerdot 5^{-12}=\frac{5^{12}\centerdot 5^{-12}}{5^{-4}} \\
 +
& \\
 +
& =\frac{5^{12-12}}{5^{-4}}=\frac{5^{0}}{5^{-4}}=5^{0-\left( -4 \right)}=5^{4}=5\centerdot 5\centerdot 5\centerdot 5=625 \\
 +
\end{align}</math>

Version vom 11:50, 15. Sep. 2008

The whole expression consists of factors having a base of \displaystyle 5;

so the power rules can be use to simplify the expression first:


\displaystyle \begin{align} & \frac{5^{12}}{5^{-4}}\centerdot \left( 5^{2} \right)^{-6}=\frac{5^{12}}{5^{-4}}\centerdot 5^{2\centerdot \left( -6 \right)}=\frac{5^{12}}{5^{-4}}\centerdot 5^{-12}=\frac{5^{12}\centerdot 5^{-12}}{5^{-4}} \\ & \\ & =\frac{5^{12-12}}{5^{-4}}=\frac{5^{0}}{5^{-4}}=5^{0-\left( -4 \right)}=5^{4}=5\centerdot 5\centerdot 5\centerdot 5=625 \\ \end{align}