Lösung 1.3:3e
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			K  (Lösning 1.3:3e moved to Solution 1.3:3e: Robot: moved page)  | 
				|||
| Zeile 1: | Zeile 1: | ||
| - | {  | + | The number   | 
| - | <  | + | <math>9</math>  | 
| - | {{  | + | can be written as   | 
| + | <math>9=3\centerdot 3=3^{2}</math>  | ||
| + | |||
| + | and hence the denominator in the expression is equal to  | ||
| + | |||
| + | |||
| + | <math>9^{2}=\left( 3^{2} \right)^{2}=3^{2\centerdot 2}=3^{4}</math>  | ||
| + | |||
| + | The whole quotient becomes  | ||
| + | |||
| + | |||
| + | <math>\frac{3}{9^{2}}=\frac{3^{1}}{3^{4}}=3^{1-4}=3^{^{-3}}</math>  | ||
Version vom 11:42, 15. Sep. 2008
The number \displaystyle 9 can be written as \displaystyle 9=3\centerdot 3=3^{2}
and hence the denominator in the expression is equal to
\displaystyle 9^{2}=\left( 3^{2} \right)^{2}=3^{2\centerdot 2}=3^{4}
The whole quotient becomes
\displaystyle \frac{3}{9^{2}}=\frac{3^{1}}{3^{4}}=3^{1-4}=3^{^{-3}}
