Lösung 1.3:1d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.3:1d moved to Solution 1.3:1d: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
By using the power rules, we can rewrite the expression,
-
<center> [[Image:1_3_1d.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\left( \frac{2}{3} \right)^{-3}=\frac{2^{-3}}{3^{-3}}=\frac{\frac{1}{2^{3}}}{\frac{1}{3^{3}}}=\frac{\frac{1}{2^{3}}\centerdot 3^{3}}{\frac{1}{3^{3}}\centerdot 3^{3}}=\frac{\frac{3^{3}}{2^{3}}}{1}=\frac{3^{3}}{2^{3}}</math>
 +
 
 +
and then carry out the calculation:
 +
 
 +
 
 +
<math>\frac{3^{3}}{2^{3}}=\frac{3\centerdot 3\centerdot 3}{2\centerdot 2\centerdot 2}=\frac{27}{8}</math>

Version vom 11:10, 15. Sep. 2008

By using the power rules, we can rewrite the expression,


\displaystyle \left( \frac{2}{3} \right)^{-3}=\frac{2^{-3}}{3^{-3}}=\frac{\frac{1}{2^{3}}}{\frac{1}{3^{3}}}=\frac{\frac{1}{2^{3}}\centerdot 3^{3}}{\frac{1}{3^{3}}\centerdot 3^{3}}=\frac{\frac{3^{3}}{2^{3}}}{1}=\frac{3^{3}}{2^{3}}

and then carry out the calculation:


\displaystyle \frac{3^{3}}{2^{3}}=\frac{3\centerdot 3\centerdot 3}{2\centerdot 2\centerdot 2}=\frac{27}{8}