Lösung 3.4:1b
Aus Online Mathematik Brückenkurs 1
K (Lösning 3.4:1b moved to Solution 3.4:1b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | { | + | In the equation, both sides are positive because the factors |
- | < | + | <math>e^{x}</math> |
- | {{ | + | and |
- | { | + | <math>3^{-x}</math> |
- | < | + | are positive regardless of the value of |
- | {{ | + | <math>x</math> |
+ | (a positive base raised to a number always gives a positive number). We can therefore take the natural logarithm of both numbers, | ||
+ | |||
+ | |||
+ | <math>\ln \left( 13e^{x} \right)=\ln \left( 2\centerdot 3^{-x} \right)</math> | ||
+ | |||
+ | |||
+ | Using the log law, we can divide up the products into several logarithmic terms, | ||
+ | |||
+ | |||
+ | <math>\ln 13+\ln e^{x}=\ln 2+\ln 3^{-x}</math> | ||
+ | |||
+ | |||
+ | and using the law | ||
+ | <math>\ln a^{b}=b\centerdot \ln a</math>, we can get rid of | ||
+ | <math>x</math> | ||
+ | from the exponents: | ||
+ | |||
+ | |||
+ | <math>\ln 13+x\ln e=\ln 2+\left( -x \right)\ln 3</math> | ||
+ | |||
+ | |||
+ | Collecting together | ||
+ | <math>x</math> | ||
+ | on one side and the other terms on the other, | ||
+ | |||
+ | |||
+ | <math>x\ln e+x\ln 3=\ln 2-\ln 13</math> | ||
+ | |||
+ | |||
+ | Take out | ||
+ | <math>x</math> | ||
+ | on the left-hand side and use | ||
+ | <math>\ln e=1</math> | ||
+ | : | ||
+ | |||
+ | |||
+ | <math>x\left( 1+\ln 3 \right)=\ln 2-\ln 13</math> | ||
+ | |||
+ | |||
+ | Then, solve for | ||
+ | <math>x</math> | ||
+ | : | ||
+ | |||
+ | |||
+ | <math>x=\frac{\ln 2-\ln 13}{1+\ln 3}</math> | ||
+ | |||
+ | |||
+ | NOTE: Because | ||
+ | <math>\ln 2<\ln 13</math>, we can write the answer as | ||
+ | |||
+ | |||
+ | <math>x=-\frac{\ln 13-\ln 2}{1+\ln 3}</math> | ||
+ | |||
+ | |||
+ | in order to indicate that | ||
+ | <math>x</math> | ||
+ | is negative. |
Version vom 12:55, 12. Sep. 2008
In the equation, both sides are positive because the factors \displaystyle e^{x} and \displaystyle 3^{-x} are positive regardless of the value of \displaystyle x (a positive base raised to a number always gives a positive number). We can therefore take the natural logarithm of both numbers,
\displaystyle \ln \left( 13e^{x} \right)=\ln \left( 2\centerdot 3^{-x} \right)
Using the log law, we can divide up the products into several logarithmic terms,
\displaystyle \ln 13+\ln e^{x}=\ln 2+\ln 3^{-x}
and using the law
\displaystyle \ln a^{b}=b\centerdot \ln a, we can get rid of
\displaystyle x
from the exponents:
\displaystyle \ln 13+x\ln e=\ln 2+\left( -x \right)\ln 3
Collecting together
\displaystyle x
on one side and the other terms on the other,
\displaystyle x\ln e+x\ln 3=\ln 2-\ln 13
Take out
\displaystyle x
on the left-hand side and use
\displaystyle \ln e=1
\displaystyle x\left( 1+\ln 3 \right)=\ln 2-\ln 13
Then, solve for
\displaystyle x
\displaystyle x=\frac{\ln 2-\ln 13}{1+\ln 3}
NOTE: Because
\displaystyle \ln 2<\ln 13, we can write the answer as
\displaystyle x=-\frac{\ln 13-\ln 2}{1+\ln 3}
in order to indicate that
\displaystyle x
is negative.