Lösung 4.3:1b
Aus Online Mathematik Brückenkurs 1
K (Lösning 4.3:1b moved to Solution 4.3:1b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Because the sine value for an angle is equal to the angle's |
- | < | + | <math>y</math> |
+ | -coordinate on a unit circle, two angles have the same sine value only if they have the same <math>y</math>-coordinate. Therefore, if we draw in the angle | ||
+ | <math>{\pi }/{7}\;</math> | ||
+ | on a unit circle, we see that the only angle between | ||
+ | <math>{\pi }/{2}\;</math> | ||
+ | and | ||
+ | <math>\pi </math> | ||
+ | which has the same sine value lies in the second quadrant, where the line | ||
+ | <math>{y=\sin \pi }/{7}\;</math> | ||
+ | cuts the unit circle. | ||
- | < | + | |
- | {{ | + | FIGURE1 FIGURE2 |
+ | the line | ||
+ | <math>{y=\sin \pi }/{7}\;</math> | ||
+ | the line | ||
+ | <math>{y=\sin \pi }/{7}\;</math> | ||
+ | |||
+ | |||
+ | Because of symmetry, we have that this angle is the reflection of the angle | ||
+ | <math>{\pi }/{7}\;</math> | ||
+ | in the | ||
+ | <math>y</math>-axis, i.e. | ||
+ | |||
+ | <math>v=\pi -{\pi }/{7}\;={6\pi }/{7}\;</math>. |
Version vom 11:59, 12. Sep. 2008
Because the sine value for an angle is equal to the angle's \displaystyle y -coordinate on a unit circle, two angles have the same sine value only if they have the same \displaystyle y-coordinate. Therefore, if we draw in the angle \displaystyle {\pi }/{7}\; on a unit circle, we see that the only angle between \displaystyle {\pi }/{2}\; and \displaystyle \pi which has the same sine value lies in the second quadrant, where the line \displaystyle {y=\sin \pi }/{7}\; cuts the unit circle.
FIGURE1 FIGURE2
the line
\displaystyle {y=\sin \pi }/{7}\;
the line
\displaystyle {y=\sin \pi }/{7}\;
Because of symmetry, we have that this angle is the reflection of the angle
\displaystyle {\pi }/{7}\;
in the
\displaystyle y-axis, i.e.
\displaystyle v=\pi -{\pi }/{7}\;={6\pi }/{7}\;.