Lösung 2.3:1b
Aus Online Mathematik Brückenkurs 1
K (Lösning 2.3:1b moved to Solution 2.3:1b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | When we complete the square, it is only the first two terms, |
- | < | + | <math>x^{2}+2x</math> |
- | {{ | + | , that are involved. The general |
+ | formula for completing the square states that | ||
+ | <math>x^{2}+ax</math> | ||
+ | equals | ||
+ | |||
+ | |||
+ | <math>\left( x+\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}</math> | ||
+ | |||
+ | |||
+ | Note how the coefficient | ||
+ | <math>a</math> | ||
+ | in front of the | ||
+ | <math>x</math> | ||
+ | turns up halved in two places. | ||
+ | |||
+ | If we use this formula, we obtain | ||
+ | |||
+ | |||
+ | <math>x^{2}+2x=\left( x+\frac{2}{2} \right)^{2}-\left( \frac{2}{2} \right)^{2}=\left( x+1 \right)^{2}-1</math> | ||
+ | |||
+ | |||
+ | and if we subtract the last " | ||
+ | <math>1</math> | ||
+ | " , we obtain | ||
+ | |||
+ | |||
+ | <math>x^{2}+2x-1=\left( x+1 \right)^{2}-1-1=\left( x+1 \right)^{2}-2</math> | ||
+ | |||
+ | |||
+ | To be completely certain that we have used the correct formula, we can expand the quadratic on the right-hand side, | ||
+ | |||
+ | |||
+ | <math>\left( x+1 \right)^{2}-2=x^{2}+2x+1-2=x^{2}+2x-1</math> | ||
+ | |||
+ | |||
+ | and see that the relation really holds. |
Version vom 10:11, 12. Sep. 2008
When we complete the square, it is only the first two terms, \displaystyle x^{2}+2x , that are involved. The general formula for completing the square states that \displaystyle x^{2}+ax equals
\displaystyle \left( x+\frac{a}{2} \right)^{2}-\left( \frac{a}{2} \right)^{2}
Note how the coefficient
\displaystyle a
in front of the
\displaystyle x
turns up halved in two places.
If we use this formula, we obtain
\displaystyle x^{2}+2x=\left( x+\frac{2}{2} \right)^{2}-\left( \frac{2}{2} \right)^{2}=\left( x+1 \right)^{2}-1
and if we subtract the last "
\displaystyle 1
" , we obtain
\displaystyle x^{2}+2x-1=\left( x+1 \right)^{2}-1-1=\left( x+1 \right)^{2}-2
To be completely certain that we have used the correct formula, we can expand the quadratic on the right-hand side,
\displaystyle \left( x+1 \right)^{2}-2=x^{2}+2x+1-2=x^{2}+2x-1
and see that the relation really holds.