Lösung 2.3:1a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 2.3:1a moved to Solution 2.3:1a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | If we consider the squaring rule |
- | < | + | |
- | {{ | + | |
+ | <math>\left( x-a \right)^{2}=x^{2}-2ax+a^{2}</math> | ||
+ | |||
+ | and move | ||
+ | <math>a^{2}</math> | ||
+ | over to the left-hand side, we obtain the formula | ||
+ | |||
+ | |||
+ | <math>\left( x-a \right)^{2}-a^{2}=x^{2}-2ax</math> | ||
+ | |||
+ | |||
+ | <math></math> | ||
+ | |||
+ | |||
+ | With the help of this formula, we can rewrite (complete the square of) a mixed expression | ||
+ | <math>x^{2}-2ax</math> | ||
+ | to a obtain a quadratic expression, | ||
+ | <math>\left( x-a \right)^{2}-a^{2}</math> | ||
+ | . | ||
+ | |||
+ | The expression | ||
+ | <math>x^{2}-2x</math> | ||
+ | corresponds to | ||
+ | <math>a=1</math> | ||
+ | in the formula above and thus | ||
+ | |||
+ | |||
+ | <math>x^{2}-2x=\left( x-1 \right)^{2}-1</math> |
Version vom 09:53, 12. Sep. 2008
If we consider the squaring rule
\displaystyle \left( x-a \right)^{2}=x^{2}-2ax+a^{2}
and move \displaystyle a^{2} over to the left-hand side, we obtain the formula
\displaystyle \left( x-a \right)^{2}-a^{2}=x^{2}-2ax
\displaystyle
With the help of this formula, we can rewrite (complete the square of) a mixed expression
\displaystyle x^{2}-2ax
to a obtain a quadratic expression,
\displaystyle \left( x-a \right)^{2}-a^{2}
.
The expression \displaystyle x^{2}-2x corresponds to \displaystyle a=1 in the formula above and thus
\displaystyle x^{2}-2x=\left( x-1 \right)^{2}-1