Lösung 1.2:5c
Aus Online Mathematik Brückenkurs 1
K (Lösning 1.2:5c moved to Solution 1.2:5c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Method 1 |
- | < | + | |
- | < | + | We calculate the numerator and denominator first. |
- | {{ | + | |
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{3}{10}-\frac{1}{5}=\frac{3}{10}-\frac{1\centerdot 2}{5\centerdot 2}=\frac{3-2}{10}=\frac{1}{10} \\ | ||
+ | & \frac{7}{8}-\frac{3}{16}=\frac{7\centerdot 2}{8\centerdot 2}-\frac{3}{16}=\frac{14-3}{16}=\frac{11}{16} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | Thus, the expression becomes | ||
+ | |||
+ | |||
+ | <math>\frac{\frac{3}{10}-\frac{1}{5}}{\frac{7}{8}-\frac{3}{16}}=\frac{\frac{1}{10}}{\frac{11}{16}}=\frac{\frac{1}{10}\centerdot \frac{16}{11}}{\frac{11}{16}\centerdot \frac{16}{11}}=\frac{16}{10\centerdot 11}</math> | ||
+ | |||
+ | |||
+ | and because | ||
+ | <math>16=2\centerdot 2\centerdot 2\centerdot 2</math> | ||
+ | and 10=2∙5 | ||
+ | <math>10=2\centerdot 5</math> | ||
+ | , the simplified answer is | ||
+ | |||
+ | |||
+ | <math>\frac{16}{10\centerdot 11}=\frac{2\centerdot 2\centerdot 2\centerdot 2}{2\centerdot 5\centerdot 11}=\frac{8}{55}</math> | ||
+ | |||
+ | Method 2 | ||
+ | |||
+ | If we look at the individual fractions | ||
+ | <math>{3}/{10}\;,\ \ {1}/{5,\ \ {7}/{8}\;}\;</math> | ||
+ | and | ||
+ | <math>{3}/{16}\;</math> | ||
+ | , we see that the denominators can be factorized as | ||
+ | |||
+ | |||
+ | <math>10=2\centerdot 5,\ 8=2\centerdot 2\centerdot 2</math> | ||
+ | |||
+ | <math>10=2\centerdot 5,\quad 8=2\centerdot 2\centerdot 2</math> | ||
+ | and | ||
+ | <math>16=2\centerdot 2\centerdot 2\centerdot 2</math> | ||
+ | |||
+ | |||
+ | and therefore 2∙2∙2∙2∙5 is the fractions' lowest common denominator. | ||
+ | |||
+ | If we multiply the top and bottom of the main fraction by | ||
+ | <math>80</math> | ||
+ | , then it will be possible to eliminate all denominators at once, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \frac{\frac{3}{10}-\frac{1}{5}}{\frac{7}{8}-\frac{3}{16}}=\frac{\left( \frac{3}{10}-\frac{1}{5} \right)\centerdot 80}{\left( \frac{7}{8}-\frac{3}{16} \right)\centerdot 80}=\frac{\frac{3\centerdot 80}{10}-\frac{1\centerdot 80}{5}}{\frac{7\centerdot 80}{8}-\frac{3\centerdot 80}{16}} \\ | ||
+ | & \\ | ||
+ | & =\frac{\frac{3\centerdot 8\centerdot 10}{10}-\frac{8\centerdot 2\centerdot 5}{5}}{\frac{7\centerdot 8\centerdot 10}{8}-\frac{3\centerdot 16\centerdot 5}{16}}=\frac{3\centerdot 8-8\centerdot 2}{7\centerdot 10-3\centerdot }=\frac{8}{55} \\ | ||
+ | & \\ | ||
+ | \end{align}</math> |
Version vom 15:00, 11. Sep. 2008
Method 1
We calculate the numerator and denominator first.
\displaystyle \begin{align}
& \frac{3}{10}-\frac{1}{5}=\frac{3}{10}-\frac{1\centerdot 2}{5\centerdot 2}=\frac{3-2}{10}=\frac{1}{10} \\
& \frac{7}{8}-\frac{3}{16}=\frac{7\centerdot 2}{8\centerdot 2}-\frac{3}{16}=\frac{14-3}{16}=\frac{11}{16} \\
\end{align}
Thus, the expression becomes
\displaystyle \frac{\frac{3}{10}-\frac{1}{5}}{\frac{7}{8}-\frac{3}{16}}=\frac{\frac{1}{10}}{\frac{11}{16}}=\frac{\frac{1}{10}\centerdot \frac{16}{11}}{\frac{11}{16}\centerdot \frac{16}{11}}=\frac{16}{10\centerdot 11}
and because
\displaystyle 16=2\centerdot 2\centerdot 2\centerdot 2
and 10=2∙5
\displaystyle 10=2\centerdot 5
, the simplified answer is
\displaystyle \frac{16}{10\centerdot 11}=\frac{2\centerdot 2\centerdot 2\centerdot 2}{2\centerdot 5\centerdot 11}=\frac{8}{55}
Method 2
If we look at the individual fractions \displaystyle {3}/{10}\;,\ \ {1}/{5,\ \ {7}/{8}\;}\; and \displaystyle {3}/{16}\; , we see that the denominators can be factorized as
\displaystyle 10=2\centerdot 5,\ 8=2\centerdot 2\centerdot 2
\displaystyle 10=2\centerdot 5,\quad 8=2\centerdot 2\centerdot 2 and \displaystyle 16=2\centerdot 2\centerdot 2\centerdot 2
and therefore 2∙2∙2∙2∙5 is the fractions' lowest common denominator.
If we multiply the top and bottom of the main fraction by \displaystyle 80 , then it will be possible to eliminate all denominators at once,
\displaystyle \begin{align}
& \frac{\frac{3}{10}-\frac{1}{5}}{\frac{7}{8}-\frac{3}{16}}=\frac{\left( \frac{3}{10}-\frac{1}{5} \right)\centerdot 80}{\left( \frac{7}{8}-\frac{3}{16} \right)\centerdot 80}=\frac{\frac{3\centerdot 80}{10}-\frac{1\centerdot 80}{5}}{\frac{7\centerdot 80}{8}-\frac{3\centerdot 80}{16}} \\
& \\
& =\frac{\frac{3\centerdot 8\centerdot 10}{10}-\frac{8\centerdot 2\centerdot 5}{5}}{\frac{7\centerdot 8\centerdot 10}{8}-\frac{3\centerdot 16\centerdot 5}{16}}=\frac{3\centerdot 8-8\centerdot 2}{7\centerdot 10-3\centerdot }=\frac{8}{55} \\
& \\
\end{align}