Lösung 1.2:5b
Aus Online Mathematik Brückenkurs 1
K (Lösning 1.2:5b moved to Solution 1.2:5b: Robot: moved page) |
|||
| Zeile 1: | Zeile 1: | ||
| - | {{ | + | Method 1 |
| - | < | + | |
| - | {{ | + | One solution is to calculate the numerator and denominator in the main fraction individually: |
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \frac{1}{2}+\frac{1}{3}=\frac{1\centerdot 3}{2\centerdot 3}+\frac{1\centerdot 2}{3\centerdot 2}=\frac{3}{6}+\frac{2}{6}=\frac{5}{6} \\ | ||
| + | & \\ | ||
| + | & \frac{1}{3}-\frac{1}{2}=\frac{1\centerdot 2}{3\centerdot 2}-\frac{1\centerdot 3}{2\centerdot 3}=\frac{2}{6}-\frac{3}{6}=-\frac{1}{6} \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | |||
| + | The whole expression then reduces to a double fraction which we calculate by multiplying top and bottom by the reciprocal of the denominator: | ||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \frac{1}{2}+\frac{1}{3}=\frac{1\centerdot 3}{2\centerdot 3}+\frac{1\centerdot 2}{3\centerdot 2}=\frac{3}{6}+\frac{2}{6}=\frac{5}{6} \\ | ||
| + | & \\ | ||
| + | & \frac{1}{3}-\frac{1}{2}=\frac{1\centerdot 2}{3\centerdot 2}-\frac{1\centerdot 3}{2\centerdot 3}=\frac{2}{6}-\frac{3}{6}=-\frac{1}{6} \\ | ||
| + | & \frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{3}-\frac{1}{2}}=\frac{\frac{5}{6}}{-\frac{1}{6}}=\frac{\frac{5}{6}\centerdot 6}{-\frac{1}{6}\centerdot 6}=\frac{5}{-1}=-5 \\ | ||
| + | \end{align}</math> | ||
| + | |||
| + | |||
| + | Method 2 | ||
| + | |||
| + | Another way to solve the exercise is to multiplying the top and bottom of the main fraction by | ||
| + | <math>3\centerdot 2=6</math> | ||
| + | , so that all denominators in the partial fractions | ||
| + | <math>{1}/{2}\;</math> | ||
| + | and | ||
| + | <math>{1}/{3}\;</math> | ||
| + | can eliminated in one step: | ||
| + | |||
| + | |||
| + | |||
| + | <math>\begin{align} | ||
| + | & \\ | ||
| + | & \frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{3}-\frac{1}{2}}=\frac{\left( \frac{1}{2}+\frac{1}{3} \right)\centerdot 6}{\left( \frac{1}{3}-\frac{1}{2} \right)\centerdot 6}=\frac{\frac{6}{2}+\frac{6}{3}}{\frac{6}{3}-\frac{6}{2}}=\frac{3+2}{2-3}=\frac{5}{-1}=-5 \\ | ||
| + | \end{align}</math> | ||
Version vom 14:54, 11. Sep. 2008
Method 1
One solution is to calculate the numerator and denominator in the main fraction individually:
\displaystyle \begin{align}
& \frac{1}{2}+\frac{1}{3}=\frac{1\centerdot 3}{2\centerdot 3}+\frac{1\centerdot 2}{3\centerdot 2}=\frac{3}{6}+\frac{2}{6}=\frac{5}{6} \\
& \\
& \frac{1}{3}-\frac{1}{2}=\frac{1\centerdot 2}{3\centerdot 2}-\frac{1\centerdot 3}{2\centerdot 3}=\frac{2}{6}-\frac{3}{6}=-\frac{1}{6} \\
\end{align}
The whole expression then reduces to a double fraction which we calculate by multiplying top and bottom by the reciprocal of the denominator:
\displaystyle \begin{align}
& \frac{1}{2}+\frac{1}{3}=\frac{1\centerdot 3}{2\centerdot 3}+\frac{1\centerdot 2}{3\centerdot 2}=\frac{3}{6}+\frac{2}{6}=\frac{5}{6} \\
& \\
& \frac{1}{3}-\frac{1}{2}=\frac{1\centerdot 2}{3\centerdot 2}-\frac{1\centerdot 3}{2\centerdot 3}=\frac{2}{6}-\frac{3}{6}=-\frac{1}{6} \\
& \frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{3}-\frac{1}{2}}=\frac{\frac{5}{6}}{-\frac{1}{6}}=\frac{\frac{5}{6}\centerdot 6}{-\frac{1}{6}\centerdot 6}=\frac{5}{-1}=-5 \\
\end{align}
Method 2
Another way to solve the exercise is to multiplying the top and bottom of the main fraction by \displaystyle 3\centerdot 2=6 , so that all denominators in the partial fractions \displaystyle {1}/{2}\; and \displaystyle {1}/{3}\; can eliminated in one step:
\displaystyle \begin{align} & \\ & \frac{\frac{1}{2}+\frac{1}{3}}{\frac{1}{3}-\frac{1}{2}}=\frac{\left( \frac{1}{2}+\frac{1}{3} \right)\centerdot 6}{\left( \frac{1}{3}-\frac{1}{2} \right)\centerdot 6}=\frac{\frac{6}{2}+\frac{6}{3}}{\frac{6}{3}-\frac{6}{2}}=\frac{3+2}{2-3}=\frac{5}{-1}=-5 \\ \end{align}
