Lösung 1.2:5a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 1.2:5a moved to Solution 1.2:5a: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
We begin by calculating the numerator in the main fraction:
-
<center> [[Image:1_2_5a.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\frac{2}{\frac{1}{7}-\frac{1}{15}}=\frac{2}{\frac{1\centerdot 15}{7\centerdot 15}-\frac{1\centerdot 7}{15\centerdot 7}}=\frac{2}{\frac{15-7}{7\centerdot 15}}=\frac{2}{\frac{8}{7\centerdot 15}}</math>
 +
 
 +
 
 +
Note that we keep
 +
<math>7\centerdot 15</math>
 +
as it is, and do not multiply it to give
 +
<math>105</math>
 +
, because this will make the task
 +
of cancellation later simpler. We calculate the fraction on the right-hand side by multiplying top and bottom by
 +
<math>7\centerdot {15}/{8}\;</math>
 +
:
 +
 
 +
 
 +
<math>\frac{2}{\frac{8}{7\centerdot 15}}=\frac{2\centerdot \frac{7\centerdot 5}{8}}{\frac{8}{7\centerdot 15}\centerdot \frac{7\centerdot 5}{8}}=\frac{2\centerdot 7\centerdot 15}{8}</math>
 +
 
 +
 
 +
If we now divide up
 +
<math>8</math>
 +
and
 +
<math>15</math>
 +
into their smallest possible integer factors,
 +
<math>8=2\centerdot 2\centerdot 2</math>
 +
and
 +
<math>15=3\centerdot 5</math>
 +
, we see that the answer in simplified form will be
 +
 
 +
 
 +
<math>\frac{2\centerdot 7\centerdot 15}{8}=\frac{2\centerdot 7\centerdot 3\centerdot 5}{2\centerdot 2\centerdot 2}=\frac{7\centerdot 3\centerdot 5}{2\centerdot 2}=\frac{105}{4}</math>

Version vom 14:51, 11. Sep. 2008

We begin by calculating the numerator in the main fraction:


\displaystyle \frac{2}{\frac{1}{7}-\frac{1}{15}}=\frac{2}{\frac{1\centerdot 15}{7\centerdot 15}-\frac{1\centerdot 7}{15\centerdot 7}}=\frac{2}{\frac{15-7}{7\centerdot 15}}=\frac{2}{\frac{8}{7\centerdot 15}}


Note that we keep \displaystyle 7\centerdot 15 as it is, and do not multiply it to give \displaystyle 105 , because this will make the task of cancellation later simpler. We calculate the fraction on the right-hand side by multiplying top and bottom by \displaystyle 7\centerdot {15}/{8}\;


\displaystyle \frac{2}{\frac{8}{7\centerdot 15}}=\frac{2\centerdot \frac{7\centerdot 5}{8}}{\frac{8}{7\centerdot 15}\centerdot \frac{7\centerdot 5}{8}}=\frac{2\centerdot 7\centerdot 15}{8}


If we now divide up \displaystyle 8 and \displaystyle 15 into their smallest possible integer factors, \displaystyle 8=2\centerdot 2\centerdot 2 and \displaystyle 15=3\centerdot 5 , we see that the answer in simplified form will be


\displaystyle \frac{2\centerdot 7\centerdot 15}{8}=\frac{2\centerdot 7\centerdot 3\centerdot 5}{2\centerdot 2\centerdot 2}=\frac{7\centerdot 3\centerdot 5}{2\centerdot 2}=\frac{105}{4}