Lösung 1.2:5a
Aus Online Mathematik Brückenkurs 1
K (Lösning 1.2:5a moved to Solution 1.2:5a: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We begin by calculating the numerator in the main fraction: |
- | < | + | |
- | {{ | + | |
+ | <math>\frac{2}{\frac{1}{7}-\frac{1}{15}}=\frac{2}{\frac{1\centerdot 15}{7\centerdot 15}-\frac{1\centerdot 7}{15\centerdot 7}}=\frac{2}{\frac{15-7}{7\centerdot 15}}=\frac{2}{\frac{8}{7\centerdot 15}}</math> | ||
+ | |||
+ | |||
+ | Note that we keep | ||
+ | <math>7\centerdot 15</math> | ||
+ | as it is, and do not multiply it to give | ||
+ | <math>105</math> | ||
+ | , because this will make the task | ||
+ | of cancellation later simpler. We calculate the fraction on the right-hand side by multiplying top and bottom by | ||
+ | <math>7\centerdot {15}/{8}\;</math> | ||
+ | : | ||
+ | |||
+ | |||
+ | <math>\frac{2}{\frac{8}{7\centerdot 15}}=\frac{2\centerdot \frac{7\centerdot 5}{8}}{\frac{8}{7\centerdot 15}\centerdot \frac{7\centerdot 5}{8}}=\frac{2\centerdot 7\centerdot 15}{8}</math> | ||
+ | |||
+ | |||
+ | If we now divide up | ||
+ | <math>8</math> | ||
+ | and | ||
+ | <math>15</math> | ||
+ | into their smallest possible integer factors, | ||
+ | <math>8=2\centerdot 2\centerdot 2</math> | ||
+ | and | ||
+ | <math>15=3\centerdot 5</math> | ||
+ | , we see that the answer in simplified form will be | ||
+ | |||
+ | |||
+ | <math>\frac{2\centerdot 7\centerdot 15}{8}=\frac{2\centerdot 7\centerdot 3\centerdot 5}{2\centerdot 2\centerdot 2}=\frac{7\centerdot 3\centerdot 5}{2\centerdot 2}=\frac{105}{4}</math> |
Version vom 14:51, 11. Sep. 2008
We begin by calculating the numerator in the main fraction:
\displaystyle \frac{2}{\frac{1}{7}-\frac{1}{15}}=\frac{2}{\frac{1\centerdot 15}{7\centerdot 15}-\frac{1\centerdot 7}{15\centerdot 7}}=\frac{2}{\frac{15-7}{7\centerdot 15}}=\frac{2}{\frac{8}{7\centerdot 15}}
Note that we keep
\displaystyle 7\centerdot 15
as it is, and do not multiply it to give
\displaystyle 105
, because this will make the task
of cancellation later simpler. We calculate the fraction on the right-hand side by multiplying top and bottom by
\displaystyle 7\centerdot {15}/{8}\;
\displaystyle \frac{2}{\frac{8}{7\centerdot 15}}=\frac{2\centerdot \frac{7\centerdot 5}{8}}{\frac{8}{7\centerdot 15}\centerdot \frac{7\centerdot 5}{8}}=\frac{2\centerdot 7\centerdot 15}{8}
If we now divide up
\displaystyle 8
and
\displaystyle 15
into their smallest possible integer factors,
\displaystyle 8=2\centerdot 2\centerdot 2
and
\displaystyle 15=3\centerdot 5
, we see that the answer in simplified form will be
\displaystyle \frac{2\centerdot 7\centerdot 15}{8}=\frac{2\centerdot 7\centerdot 3\centerdot 5}{2\centerdot 2\centerdot 2}=\frac{7\centerdot 3\centerdot 5}{2\centerdot 2}=\frac{105}{4}