Lösung 1.2:4c
Aus Online Mathematik Brückenkurs 1
K (Lösning 1.2:4c moved to Solution 1.2:4c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Method 1 |
- | < | + | |
- | < | + | If we calculate the numerator in the main fraction first, we get |
- | {{ | + | |
+ | |||
+ | <math>\frac{\frac{1}{4}-\frac{1}{5}}{\frac{3}{16}}=\frac{\frac{1\centerdot 5}{4\centerdot 5}-\frac{1\centerdot 4}{5\centerdot 4}}{\frac{3}{16}}=\frac{\frac{5}{20}-\frac{4}{20}}{\frac{3}{10}}=\frac{\frac{1}{20}}{\frac{3}{10}}</math> | ||
+ | |||
+ | The double fraction on the right-hand side becomes, after multiplying top and bottom by | ||
+ | <math>{10}/{3}\;</math> | ||
+ | , | ||
+ | |||
+ | |||
+ | <math>\frac{\frac{1}{20}}{\frac{3}{10}}=\frac{\frac{1}{20}\centerdot \frac{10}{3}}{\frac{3}{10}\centerdot \frac{10}{3}}=\frac{1}{20}\centerdot \frac{10}{3}</math> | ||
+ | |||
+ | |||
+ | Then, we remove the common factor 10: | ||
+ | |||
+ | |||
+ | <math>\frac{1}{20}\centerdot \frac{10}{3}=\frac{1}{2\centerdot 10}\centerdot \frac{10}{3}=\frac{1}{2\centerdot 3}=\frac{1}{6}</math> | ||
+ | |||
+ | |||
+ | |||
+ | Method 2 | ||
+ | |||
+ | Another way to calculate the expression is to divide it up into two separate terms: | ||
+ | |||
+ | |||
+ | <math>\frac{\frac{1}{4}-\frac{1}{5}}{\frac{3}{16}}=\frac{\frac{1}{4}}{\frac{3}{10}}-\frac{\frac{1}{5}}{\frac{3}{10}}</math> | ||
+ | |||
+ | We simplify both double fractions on the right-hand side by multiplying top and bottom by 10/3: | ||
+ | |||
+ | |||
+ | <math>\frac{\frac{1}{4}}{\frac{3}{10}}-\frac{\frac{1}{5}}{\frac{3}{10}}=\frac{\frac{1}{4}\centerdot \frac{10}{3}}{\frac{3}{10}\centerdot \frac{10}{3}}-\frac{\frac{1}{5}\centerdot \frac{10}{3}}{\frac{3}{10}\centerdot \frac{10}{3}}=\frac{1}{4}\centerdot \frac{10}{3}-\frac{1}{5}\centerdot \frac{10}{3}</math> | ||
+ | |||
+ | Instead of multiplying, respectively, by | ||
+ | <math>4\centerdot 3</math> | ||
+ | and | ||
+ | <math>5\centerdot 3</math> | ||
+ | , we keep the numerators factorized and observe that if we multiply the top and bottom of the first fraction by | ||
+ | <math>5</math> | ||
+ | and the second by | ||
+ | <math>4</math> | ||
+ | , we obtain the common denominator: | ||
+ | |||
+ | |||
+ | <math>\frac{10}{4\centerdot 3}-\frac{10}{5\centerdot 3}=\frac{10\centerdot 5}{4\centerdot 3\centerdot 5}-\frac{10\centerdot 4}{5\centerdot 3\centerdot 4}=\frac{50-40}{3\centerdot 4\centerdot 5}=\frac{10}{3\centerdot 4\centerdot 5}</math> | ||
+ | |||
+ | Because | ||
+ | <math>10=2\centerdot 5</math> | ||
+ | and | ||
+ | <math>4=2\centerdot 2</math> | ||
+ | , we can cancel out the common factors | ||
+ | <math>2</math> | ||
+ | and | ||
+ | <math>5</math> | ||
+ | and obtain the answer: | ||
+ | |||
+ | |||
+ | <math>\frac{10}{3\centerdot 4\centerdot 5}=\frac{2\centerdot 5}{3\centerdot 2\centerdot 2\centerdot 5}=\frac{1}{6}</math> |
Version vom 13:31, 11. Sep. 2008
Method 1
If we calculate the numerator in the main fraction first, we get
\displaystyle \frac{\frac{1}{4}-\frac{1}{5}}{\frac{3}{16}}=\frac{\frac{1\centerdot 5}{4\centerdot 5}-\frac{1\centerdot 4}{5\centerdot 4}}{\frac{3}{16}}=\frac{\frac{5}{20}-\frac{4}{20}}{\frac{3}{10}}=\frac{\frac{1}{20}}{\frac{3}{10}}
The double fraction on the right-hand side becomes, after multiplying top and bottom by \displaystyle {10}/{3}\; ,
\displaystyle \frac{\frac{1}{20}}{\frac{3}{10}}=\frac{\frac{1}{20}\centerdot \frac{10}{3}}{\frac{3}{10}\centerdot \frac{10}{3}}=\frac{1}{20}\centerdot \frac{10}{3}
Then, we remove the common factor 10:
\displaystyle \frac{1}{20}\centerdot \frac{10}{3}=\frac{1}{2\centerdot 10}\centerdot \frac{10}{3}=\frac{1}{2\centerdot 3}=\frac{1}{6}
Method 2
Another way to calculate the expression is to divide it up into two separate terms:
\displaystyle \frac{\frac{1}{4}-\frac{1}{5}}{\frac{3}{16}}=\frac{\frac{1}{4}}{\frac{3}{10}}-\frac{\frac{1}{5}}{\frac{3}{10}}
We simplify both double fractions on the right-hand side by multiplying top and bottom by 10/3:
\displaystyle \frac{\frac{1}{4}}{\frac{3}{10}}-\frac{\frac{1}{5}}{\frac{3}{10}}=\frac{\frac{1}{4}\centerdot \frac{10}{3}}{\frac{3}{10}\centerdot \frac{10}{3}}-\frac{\frac{1}{5}\centerdot \frac{10}{3}}{\frac{3}{10}\centerdot \frac{10}{3}}=\frac{1}{4}\centerdot \frac{10}{3}-\frac{1}{5}\centerdot \frac{10}{3}
Instead of multiplying, respectively, by \displaystyle 4\centerdot 3 and \displaystyle 5\centerdot 3 , we keep the numerators factorized and observe that if we multiply the top and bottom of the first fraction by \displaystyle 5 and the second by \displaystyle 4 , we obtain the common denominator:
\displaystyle \frac{10}{4\centerdot 3}-\frac{10}{5\centerdot 3}=\frac{10\centerdot 5}{4\centerdot 3\centerdot 5}-\frac{10\centerdot 4}{5\centerdot 3\centerdot 4}=\frac{50-40}{3\centerdot 4\centerdot 5}=\frac{10}{3\centerdot 4\centerdot 5}
Because \displaystyle 10=2\centerdot 5 and \displaystyle 4=2\centerdot 2 , we can cancel out the common factors \displaystyle 2 and \displaystyle 5 and obtain the answer:
\displaystyle \frac{10}{3\centerdot 4\centerdot 5}=\frac{2\centerdot 5}{3\centerdot 2\centerdot 2\centerdot 5}=\frac{1}{6}