Bild:1 2 2c.gif
Aus Online Mathematik Brückenkurs 1
Größe der Voransicht: 405 × 600 Pixel
Version in höherer Auflösung (420 × 622 Pixel, Dateigröße: 46 KB, MIME-Typ: image/gif)
| Zeile 1: | Zeile 1: | ||
| + | We divide up the two numerators into the smallest possible integer factors,  | ||
| + | |||
| + | <math>\begin{align}  | ||
| + | & 12=2\centerdot 6=2\centerdot 2\centerdot 3 \\   | ||
| + | & 14=2\centerdot 7 \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | The expression can thus be written as  | ||
| + | |||
| + | |||
| + | <math>\frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}</math>  | ||
| + | |||
| + | Here, we see that the denominators have a factor    | ||
| + | <math>2</math>  | ||
| + | in common. We multiply the top and bottom of  the first fraction by   | ||
| + | <math>7</math>  | ||
| + | and the second by    | ||
| + | <math>2\centerdot 3</math>  | ||
| + | i.e. we leave out the common factor   | ||
| + | <math>2</math>  | ||
| + | , so that the fractions have the lowest common denominator    | ||
| + | <math>2\centerdot 2\centerdot 3\centerdot 7</math>  | ||
| + | ,  | ||
| + | |||
| + | |||
| + | <math>\frac{1}{12}-\frac{1}{14}=\frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}=\frac{1}{2\centerdot 2\centerdot 3}\centerdot \frac{7}{7}-\frac{1}{2\centerdot 7}\centerdot \frac{2\centerdot 3}{2\centerdot 3}</math>  | ||
| + | |||
| + | The lowest common denominator is    | ||
| + | <math>84</math>  | ||
| + | .  | ||
Aktuelle Version
We divide up the two numerators into the smallest possible integer factors,
\displaystyle \begin{align}
& 12=2\centerdot 6=2\centerdot 2\centerdot 3 \\ 
& 14=2\centerdot 7 \\ 
\end{align}
The expression can thus be written as
\displaystyle \frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}
Here, we see that the denominators have a factor \displaystyle 2 in common. We multiply the top and bottom of the first fraction by \displaystyle 7 and the second by \displaystyle 2\centerdot 3 i.e. we leave out the common factor \displaystyle 2 , so that the fractions have the lowest common denominator \displaystyle 2\centerdot 2\centerdot 3\centerdot 7 ,
\displaystyle \frac{1}{12}-\frac{1}{14}=\frac{1}{2\centerdot 2\centerdot 3}-\frac{1}{2\centerdot 7}=\frac{1}{2\centerdot 2\centerdot 3}\centerdot \frac{7}{7}-\frac{1}{2\centerdot 7}\centerdot \frac{2\centerdot 3}{2\centerdot 3}
The lowest common denominator is \displaystyle 84 .
Dateiversionen
Klicke auf einen Zeitpunkt, um die Dateiversion zu diesem Zeitpunkt darzustellen.
| Zeitpunkt | Benutzer | Maße | Dateigröße | Kommentar | |
|---|---|---|---|---|---|
| (aktuell) | 09:59, 26. Mär. 2008 | Lina (Diskussion | Beiträge) | 420×622 | 46 KB | 
- Diese Datei mit einem externen Programm bearbeiten
Siehe die Installationsanweisungen für weitere Informationen
 
Verwendung
Keine Seite benutzt diese Datei.
