2.1 Übungen
Aus Online Mathematik Brückenkurs 1
K (Robot: Automated text replacement (-2.1 Algebraiska uttryck +2.1 Algebraic expressions)) |
K (Robot: Automated text replacement (-{{Ej vald flik +{{Not selected tab)) |
||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
- | {{ | + | {{Not selected tab|[[2.1 Algebraic expressions|Theory]]}} |
{{Vald flik|[[2.1 Exercises|Exercises]]}} | {{Vald flik|[[2.1 Exercises|Exercises]]}} | ||
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| |
Version vom 13:44, 10. Sep. 2008
Exercise 2.1:1
Expand
a) | | b) | | c) | |
d) | ![]() ![]() | e) | f) | ||
g) | h) |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f | Solution g | Solution h
Exercise 2.1:2
Expand
a) | | b) | |
c) | | d) | |
e) |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e
Exercise 2.1:3
Factorise and simplify as much as possible
a) | | b) | | c) | |
d) | \displaystyle x^2-10x+25 | e) | \displaystyle 18x-2x^3 | f) | \displaystyle 16x^2+8x+1 |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Exercise 2.1:4
Determine the coefficients in front of \displaystyle \,x\, and \displaystyle \,x^2\ when the following expressions are expanded out.
a) | \displaystyle (x+2)(3x^2-x+5) |
b) | \displaystyle (1+x+x^2+x^3)(2-x+x^2+x^4) |
c) | \displaystyle (x-x^3+x^5)(1+3x+5x^2)(2-7x^2-x^4) |
Answer | Solution a | Solution b | Solution c
Exercise 2.1:5
Simplify as much as possible
a) | \displaystyle \displaystyle \frac{1}{x-x^2}-\displaystyle \frac{1}{x} | b) | \displaystyle \displaystyle \frac{1}{y^2-2y}-\displaystyle \frac{2}{y^2-4} |
c) | \displaystyle \displaystyle \frac{(3x^2-12)(x^2-1)}{(x+1)(x+2)} | d) | \displaystyle \displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)} |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 2.1:6
Simplify as much as possible
a) | \displaystyle \left(x-y+\displaystyle\frac{x^2}{y-x}\right) \displaystyle \left(\displaystyle\frac{y}{2x-y}-1\right) | b) | \displaystyle \displaystyle \frac{x}{x-2}+\displaystyle \frac{x}{x+3}-2 |
c) | \displaystyle \displaystyle \frac{2a+b}{a^2-ab}-\frac{2}{a-b} | d) | \displaystyle \displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2} |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 2.1:7
Simplify the following fractions by writing them as an expression having a common fraction sign
a) | \displaystyle \displaystyle \frac{2}{x+3}-\frac{2}{x+5} | b) | \displaystyle x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2} | c) | \displaystyle \displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2} |
Answer | Solution a | Solution b | Solution c
Exercise 2.1:8
Simplify the following fractions by writing them as an expression having a common fraction sign
a) | \displaystyle \displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ } | b) | \displaystyle \displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}} | c) | \displaystyle \displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}} |
Answer | Solution a | Solution b | Solution c