3.4 Übungen
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Svar +Answer)) |
K (Robot: Automated text replacement (-Lösning +Solution)) |
||
Zeile 19: | Zeile 19: | ||
|width="33%" | <math>3e^x=7\cdot2^x</math> | |width="33%" | <math>3e^x=7\cdot2^x</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 3.4:1|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 3.4:1|Solution a|Solution 3.4:1a|Solution b|Solution 3.4:1b|Solution c|Solution 3.4:1c}} |
===Exercise 3.4:2=== | ===Exercise 3.4:2=== | ||
Zeile 32: | Zeile 32: | ||
|width="33%" | <math>3e^{x^2}=2^x</math> | |width="33%" | <math>3e^{x^2}=2^x</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 3.4:2|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 3.4:2|Solution a|Solution 3.4:2a|Solution b|Solution 3.4:2b|Solution c|Solution 3.4:2c}} |
===Exercise 3.4:3=== | ===Exercise 3.4:3=== | ||
Zeile 46: | Zeile 46: | ||
|width="50%" | <math>\ln{x}+\ln{(x+4)}=\ln{(2x+3)}</math> | |width="50%" | <math>\ln{x}+\ln{(x+4)}=\ln{(2x+3)}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 3.4:3|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 3.4:3|Solution a|Solution 3.4:3a|Solution b|Solution 3.4:3b|Solution c|Solution 3.4:3c}} |
Version vom 11:21, 9. Sep. 2008
Exercise 3.4:1
Solve the equation
a) | \displaystyle e^x=13 | b) | \displaystyle 13e^x=2\cdot3^{-x} | c) | \displaystyle 3e^x=7\cdot2^x |
Answer
Solution a
Solution b
Solution c
Exercise 3.4:2
Solve the equation
a) | \displaystyle 2^{\scriptstyle x^2-2}=1 | b) | \displaystyle e^{2x}+e^x=4 | c) | \displaystyle 3e^{x^2}=2^x |
Answer
Solution a
Solution b
Solution c
Exercise 3.4:3
Solve the equation
a) | \displaystyle 2^{-x^2}=2e^{2x} | b) | \displaystyle \ln{(x^2+3x)}=\ln{(3x^2-2x)} |
c) | \displaystyle \ln{x}+\ln{(x+4)}=\ln{(2x+3)} |
Answer
Solution a
Solution b
Solution c