4.3 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Translated links into English)
K (Robot: Automated text replacement (-Svar +Answer))
Zeile 18: Zeile 18:
|width="33%" | <math>\tan{v}=\tan{\displaystyle \frac{2\pi}{7}}</math>
|width="33%" | <math>\tan{v}=\tan{\displaystyle \frac{2\pi}{7}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 4.3:1|Solution a |Lösning 4.3:1a|Solution b |Lösning 4.3:1b|Solution c |Lösning 4.3:1c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:1|Solution a |Lösning 4.3:1a|Solution b |Lösning 4.3:1b|Solution c |Lösning 4.3:1c}}
===Exercise 4.3:2===
===Exercise 4.3:2===
Zeile 29: Zeile 29:
|width="50%" | <math>\cos{v} = \cos{ \displaystyle \frac{7\pi}{5}}</math>
|width="50%" | <math>\cos{v} = \cos{ \displaystyle \frac{7\pi}{5}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 4.3:2|Solution a |Lösning 4.3:2a|Solution b |Lösning 4.3:2b}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:2|Solution a |Lösning 4.3:2a|Solution b |Lösning 4.3:2b}}
===Exercise 4.3:3===
===Exercise 4.3:3===
Zeile 50: Zeile 50:
|width="50%" | <math>\sin{\left( \displaystyle \frac{\pi}{3} + v \right)}</math>
|width="50%" | <math>\sin{\left( \displaystyle \frac{\pi}{3} + v \right)}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 4.3:3|Solution a |Lösning 4.3:3a|Solution b |Lösning 4.3:3b|Solution c |Lösning 4.3:3c|Solution d |Lösning 4.3:3d|Solution e |Lösning 4.3:3e|Solution f |Lösning 4.3:3f}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:3|Solution a |Lösning 4.3:3a|Solution b |Lösning 4.3:3b|Solution c |Lösning 4.3:3c|Solution d |Lösning 4.3:3d|Solution e |Lösning 4.3:3e|Solution f |Lösning 4.3:3f}}
===Exercise 4.3:4===
===Exercise 4.3:4===
Zeile 71: Zeile 71:
|width="50%" | <math>\cos{\left( v-\displaystyle \frac{\pi}{3} \right)}</math>
|width="50%" | <math>\cos{\left( v-\displaystyle \frac{\pi}{3} \right)}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 4.3:4|Solution a |Lösning 4.3:4a|Solution b |Lösning 4.3:4b|Solution c |Lösning 4.3:4c|Solution d |Lösning 4.3:4d|Solution e |Lösning 4.3:4e|Solution f |Lösning 4.3:4f}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:4|Solution a |Lösning 4.3:4a|Solution b |Lösning 4.3:4b|Solution c |Lösning 4.3:4c|Solution d |Lösning 4.3:4d|Solution e |Lösning 4.3:4e|Solution f |Lösning 4.3:4f}}
===Exercise 4.3:5===
===Exercise 4.3:5===
<div class="ovning">
<div class="ovning">
Determine <math>\,\cos{v}\,</math> and <math>\,\tan{v}\,</math>, where <math>\,v\,</math> is an acute angle in a triangle such that <math>\,\sin{v}=\displaystyle \frac{5}{7}\,</math>.
Determine <math>\,\cos{v}\,</math> and <math>\,\tan{v}\,</math>, where <math>\,v\,</math> is an acute angle in a triangle such that <math>\,\sin{v}=\displaystyle \frac{5}{7}\,</math>.
-
</div>{{#NAVCONTENT:Answer|Svar 4.3:5|Solution |Lösning 4.3:5}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:5|Solution |Lösning 4.3:5}}
===Exercise 4.3:6===
===Exercise 4.3:6===
Zeile 90: Zeile 90:
|width="100%" | Determine <math>\ \sin{v}\ </math> and <math>\ \cos{v}\ </math> if <math>\ \tan{v}=3\ </math> and <math>\ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,</math>.
|width="100%" | Determine <math>\ \sin{v}\ </math> and <math>\ \cos{v}\ </math> if <math>\ \tan{v}=3\ </math> and <math>\ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,</math>.
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 4.3:6|Solution a |Lösning 4.3:6a|Solution b |Lösning 4.3:6b|Solution c |Lösning 4.3:6c}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:6|Solution a |Lösning 4.3:6a|Solution b |Lösning 4.3:6b|Solution c |Lösning 4.3:6c}}
===Exercise 4.3:7===
===Exercise 4.3:7===
Zeile 102: Zeile 102:
|width="100%" | <math>\cos{x}=\displaystyle \frac{2}{5}\,</math>, <math>\ \cos{y}=\displaystyle \frac{3}{5}\ </math> and <math>\,x\,</math>, <math>\,y\,</math> are angles in the first quadrant.
|width="100%" | <math>\cos{x}=\displaystyle \frac{2}{5}\,</math>, <math>\ \cos{y}=\displaystyle \frac{3}{5}\ </math> and <math>\,x\,</math>, <math>\,y\,</math> are angles in the first quadrant.
|}
|}
-
</div>{{#NAVCONTENT:Answer|Svar 4.3:7|Solution a |Lösning 4.3:7a|Solution b |Lösning 4.3:7b}}
+
</div>{{#NAVCONTENT:Answer|Answer 4.3:7|Solution a |Lösning 4.3:7a|Solution b |Lösning 4.3:7b}}
===Exercise 4.3:8===
===Exercise 4.3:8===

Version vom 07:11, 9. Sep. 2008

 

Vorlage:Ej vald flik Vorlage:Vald flik

 

Exercise 4.3:1

Determine the angles \displaystyle \,v\, between \displaystyle \,\displaystyle \frac{\pi}{2}\, and \displaystyle \,2\pi\, which satisfy

a) \displaystyle \cos{v}=\cos{\displaystyle \frac{\pi}{5}} b) \displaystyle \sin{v}=\sin{\displaystyle \frac{\pi}{7}} c) \displaystyle \tan{v}=\tan{\displaystyle \frac{2\pi}{7}}

Exercise 4.3:2

Determine the angles \displaystyle \,v\, between 0 and \displaystyle \,\pi\, which satisfy

a) \displaystyle \cos{v} = \cos{\displaystyle \frac{3\pi}{2}} b) \displaystyle \cos{v} = \cos{ \displaystyle \frac{7\pi}{5}}

Exercise 4.3:3

Suppose that \displaystyle \,-\displaystyle \frac{\pi}{2} \leq v \leq \displaystyle \frac{\pi}{2}\, and that \displaystyle \,\sin{v} = a\,. With the help of \displaystyle \,a express

a) \displaystyle \sin{(-v)} b) \displaystyle \sin{(\pi-v)}
c) \displaystyle \cos{v} d) \displaystyle \sin{\left(\displaystyle \frac{\pi}{2}-v\right)}
e) \displaystyle \cos{\left( \displaystyle \frac{\pi}{2} + v\right)} f) \displaystyle \sin{\left( \displaystyle \frac{\pi}{3} + v \right)}

Exercise 4.3:4

Suppose that \displaystyle \,0 \leq v \leq \pi\, and that \displaystyle \,\cos{v}=b\,. With the help of \displaystyle \,b express

a) \displaystyle \sin^2{v} b) \displaystyle \sin{v}
c) \displaystyle \sin{2v} d) \displaystyle \cos{2v}
e) \displaystyle \sin{\left( v+\displaystyle \frac{\pi}{4} \right)} f) \displaystyle \cos{\left( v-\displaystyle \frac{\pi}{3} \right)}

Exercise 4.3:5

Determine \displaystyle \,\cos{v}\, and \displaystyle \,\tan{v}\,, where \displaystyle \,v\, is an acute angle in a triangle such that \displaystyle \,\sin{v}=\displaystyle \frac{5}{7}\,.

Exercise 4.3:6

a) Determine \displaystyle \ \sin{v}\ and \displaystyle \ \tan{v}\ if \displaystyle \ \cos{v}=\displaystyle \frac{3}{4}\ and \displaystyle \ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,.
b) Determine \displaystyle \ \cos{v}\ and \displaystyle \ \tan{v}\ if \displaystyle \ \sin{v}=\displaystyle \frac{3}{10}\ and \displaystyle \,v\, lies in the second quadrant.
c) Determine \displaystyle \ \sin{v}\ and \displaystyle \ \cos{v}\ if \displaystyle \ \tan{v}=3\ and \displaystyle \ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,.

Exercise 4.3:7

Determine \displaystyle \ \sin{(x+y)}\ if

a) \displaystyle \sin{x}=\displaystyle \frac{2}{3}\,,\displaystyle \ \sin{y}=\displaystyle \frac{1}{3}\ and \displaystyle \,x\,, \displaystyle \,y\, are angles in the first quadrant.
b) \displaystyle \cos{x}=\displaystyle \frac{2}{5}\,, \displaystyle \ \cos{y}=\displaystyle \frac{3}{5}\ and \displaystyle \,x\,, \displaystyle \,y\, are angles in the first quadrant.

Exercise 4.3:8

Show the following trigonometric relations

a) \displaystyle \tan^2v=\displaystyle\frac{\sin^2v}{1-\sin^2v}
b) \displaystyle \displaystyle \frac{1}{\cos v}-\tan v=\frac{\cos v}{1+\sin v}
c) \displaystyle \tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}
d) \displaystyle \displaystyle\frac{\cos (u+v)}{\cos u \cos v}= 1- \tan u \tan v

Exercise 4.3:9

Show Feynman's equality
\displaystyle \cos 20^\circ \cdot \cos 40^\circ \cdot \cos 80^\circ = \displaystyle\frac{1}{8}\,\mbox{.}
(Hint: use the formula for double angles on \displaystyle \,\sin 160^\circ\,.)