Lösung 2.1:1a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
|||
Zeile 1: | Zeile 1: | ||
- | <!--center> [[ | + | <!--center> [[Image:2_1_1a.gif]] </center--> |
Using the distributivity rule, we can multiply the factor <math> 3x </math> into the bracket <math> (x-1) </math>. Each term in <math> (x-1)</math> is then to be multiplied by <math> 3x, </math> | Using the distributivity rule, we can multiply the factor <math> 3x </math> into the bracket <math> (x-1) </math>. Each term in <math> (x-1)</math> is then to be multiplied by <math> 3x, </math> | ||
:<math> 3x(x-1)=3x\cdot x - 3x \cdot 1 = 3x^2-3x. </math> | :<math> 3x(x-1)=3x\cdot x - 3x \cdot 1 = 3x^2-3x. </math> |
Version vom 06:32, 21. Aug. 2008
Using the distributivity rule, we can multiply the factor \displaystyle 3x into the bracket \displaystyle (x-1) . Each term in \displaystyle (x-1) is then to be multiplied by \displaystyle 3x,
- \displaystyle 3x(x-1)=3x\cdot x - 3x \cdot 1 = 3x^2-3x.