Lösung 2.1:2c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_2c.gif </center> {{NAVCONTENT_STOP}}) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | <center> [[Bild:2_1_2c.gif]] </center> | + | <!--center> [[Bild:2_1_2c.gif]] </center--> |
+ | We obtain the answer by using the squaring rule, <math>(a+b)^2=a^2+2ab+b^2,</math> on the quadratic term and expanding the other bracketed terms: | ||
+ | |||
+ | <math> | ||
+ | \qquad | ||
+ | (3x+4)^2-(3x-2)(3x-8) | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | \qquad \qquad | ||
+ | \begin{align} | ||
+ | &=\big( (3x)^2+2\cdot 3x \cdot 4 +4^2 \big) - (3x\cdot 3x-3x\cdot 8 - 2\cdot 3x+ 2\cdot 8)\\ | ||
+ | &= (9x^2+24x+16)-(9x^2-24x-6x+16)\\ | ||
+ | &=(9x^2+24x+16)-(9x^2-30x+16)\\ | ||
+ | &=(9x^2+24x+16)-9x^2+30x-16\\ | ||
+ | &=9x^2-9x^2+24x+30x+16-16\\ | ||
+ | &=0+54x+0\\ | ||
+ | &= 54x | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | |||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 10:17, 13. Aug. 2008
We obtain the answer by using the squaring rule, \displaystyle (a+b)^2=a^2+2ab+b^2, on the quadratic term and expanding the other bracketed terms:
\displaystyle \qquad (3x+4)^2-(3x-2)(3x-8)
\displaystyle \qquad \qquad \begin{align} &=\big( (3x)^2+2\cdot 3x \cdot 4 +4^2 \big) - (3x\cdot 3x-3x\cdot 8 - 2\cdot 3x+ 2\cdot 8)\\ &= (9x^2+24x+16)-(9x^2-24x-6x+16)\\ &=(9x^2+24x+16)-(9x^2-30x+16)\\ &=(9x^2+24x+16)-9x^2+30x-16\\ &=9x^2-9x^2+24x+30x+16-16\\ &=0+54x+0\\ &= 54x \end{align}