Lösung 2.1:1e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_1e.gif </center> {{NAVCONTENT_STOP}})
Zeile 1: Zeile 1:
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
-
<center> [[Bild:2_1_1e.gif]] </center>
+
<!--center> [[Bild:2_1_1e.gif]] </center-->
 +
If we use the rule for squaring <math>(a-b)^2 = a^2-2ab+b^2 </math> with <math> a=x </math> and <math> b=7, </math> we obtain directly that
 +
 
 +
:<math> (x-7)^2=x^2-2 \cdot x \cdot 7 + 7^2 = x^2-14x+49.</math>
 +
 
 +
An alternative is to write the square as <math> (x-7)\cdot (x-7)</math> and then multiply the brackets in two steps
 +
 
 +
<math>
 +
\qquad
 +
\begin{align}
 +
(x-7)\cdot (x-7) &= (x-7)\cdot x - (x-7)\cdot 7 \\
 +
&= x\cdot x-7 \cdot x -(x\cdot 7 - 7\cdot 7) \\
 +
&= x^2 -7x-(7x-49)\\
 +
& \stackrel{*}= x^2-7x-7x+49 \\
 +
&= x^2-(7+7)x+49\\
 +
&= x^2-14x+49
 +
\end{align}
 +
</math>
 +
 
 +
In the line that has been marked with an asterisk, we have removed the bracket and at the same time changed signs on all terms inside the bracket.
 +
 
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 09:35, 13. Aug. 2008