4.4 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Regenerate images and tabs)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[4.4 Trigonometriska ekvationer|Teori]]}}
+
{{Ej vald flik|[[4.4 Trigonometriska ekvationer|Theoy]]}}
-
{{Vald flik|[[4.4 Övningar|Övningar]]}}
+
{{Vald flik|[[4.4 Övningar|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Övning 4.4:1===
+
===Exercise 4.4:1===
<div class="ovning">
<div class="ovning">
-
För vilka vinklar <math>\,v\,</math>, där <math>\,0 \leq v\leq 2\pi\,</math>, gäller att
+
For which angles <math>\,v\,</math>, where <math>\,0 \leq v\leq 2\pi\,</math>, does
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 31: Zeile 31:
</div>{{#NAVCONTENT:Svar|Svar 4.4:1|Lösning a |Lösning 4.4:1a|Lösning b |Lösning 4.4:1b|Lösning c |Lösning 4.4:1c|Lösning d |Lösning 4.4:1d|Lösning e |Lösning 4.4:1e|Lösning f |Lösning 4.4:1f|Lösning g |Lösning 4.4:1g}}
</div>{{#NAVCONTENT:Svar|Svar 4.4:1|Lösning a |Lösning 4.4:1a|Lösning b |Lösning 4.4:1b|Lösning c |Lösning 4.4:1c|Lösning d |Lösning 4.4:1d|Lösning e |Lösning 4.4:1e|Lösning f |Lösning 4.4:1f|Lösning g |Lösning 4.4:1g}}
-
===Övning 4.4:2===
+
===Exercise 4.4:2===
<div class="ovning">
<div class="ovning">
-
L&ouml;s ekvationen
+
Solve the equation
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 51: Zeile 51:
</div>{{#NAVCONTENT:Svar|Svar 4.4:2|Lösning a |Lösning 4.4:2a|Lösning b |Lösning 4.4:2b|Lösning c |Lösning 4.4:2c|Lösning d |Lösning 4.4:2d|Lösning e |Lösning 4.4:2e|Lösning f |Lösning 4.4:2f}}
</div>{{#NAVCONTENT:Svar|Svar 4.4:2|Lösning a |Lösning 4.4:2a|Lösning b |Lösning 4.4:2b|Lösning c |Lösning 4.4:2c|Lösning d |Lösning 4.4:2d|Lösning e |Lösning 4.4:2e|Lösning f |Lösning 4.4:2f}}
-
===Övning 4.4:3===
+
===Exercise 4.4:3===
<div class="ovning">
<div class="ovning">
-
Lös ekvationen
+
Solve the equation
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 67: Zeile 67:
</div>{{#NAVCONTENT:Svar|Svar 4.4:3|Lösning a |Lösning 4.4:3a|Lösning b |Lösning 4.4:3b|Lösning c |Lösning 4.4:3c|Lösning d |Lösning 4.4:3d}}
</div>{{#NAVCONTENT:Svar|Svar 4.4:3|Lösning a |Lösning 4.4:3a|Lösning b |Lösning 4.4:3b|Lösning c |Lösning 4.4:3c|Lösning d |Lösning 4.4:3d}}
-
===Övning 4.4:4===
+
===Exercise 4.4:4===
<div class="ovning">
<div class="ovning">
-
Bestäm de vinklar <math>\,v\,</math> i intervallet <math>\,0^\circ \leq v \leq 360^\circ\,</math> som uppfyller <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>.
+
Determine the angles <math>\,v\,</math> in the interval <math>\,0^\circ \leq v \leq 360^\circ\,</math> which satisfy <math>\ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,</math>.
</div>{{#NAVCONTENT:Svar|Svar 4.4:4|Lösning |Lösning 4.4:4}}
</div>{{#NAVCONTENT:Svar|Svar 4.4:4|Lösning |Lösning 4.4:4}}
-
===Övning 4.4:5===
+
===Exercise 4.4:5===
<div class="ovning">
<div class="ovning">
-
Lös ekvationen
+
Solve the equation
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 87: Zeile 87:
</div>{{#NAVCONTENT:Svar|Svar 4.4:5|Lösning a |Lösning 4.4:5a|Lösning b |Lösning 4.4:5b|Lösning c |Lösning 4.4:5c}}
</div>{{#NAVCONTENT:Svar|Svar 4.4:5|Lösning a |Lösning 4.4:5a|Lösning b |Lösning 4.4:5b|Lösning c |Lösning 4.4:5c}}
-
===Övning 4.4:6===
+
===Exercise 4.4:6===
<div class="ovning">
<div class="ovning">
-
Lös ekvationen
+
Solve the equation
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 101: Zeile 101:
</div>{{#NAVCONTENT:Svar|Svar 4.4:6|Lösning a |Lösning 4.4:6a|Lösning b |Lösning 4.4:6b|Lösning c |Lösning 4.4:6c}}
</div>{{#NAVCONTENT:Svar|Svar 4.4:6|Lösning a |Lösning 4.4:6a|Lösning b |Lösning 4.4:6b|Lösning c |Lösning 4.4:6c}}
-
===Övning 4.4:7===
+
===Exercise 4.4:7===
<div class="ovning">
<div class="ovning">
-
Lös ekvationen
+
Solve the equation
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 115: Zeile 115:
</div>{{#NAVCONTENT:Svar|Svar 4.4:7|Lösning a |Lösning 4.4:7a|Lösning b |Lösning 4.4:7b|Lösning c |Lösning 4.4:7c}}
</div>{{#NAVCONTENT:Svar|Svar 4.4:7|Lösning a |Lösning 4.4:7a|Lösning b |Lösning 4.4:7b|Lösning c |Lösning 4.4:7c}}
-
===Övning 4.4:8===
+
===Exercise 4.4:8===
<div class="ovning">
<div class="ovning">
-
Lös ekvationen
+
Solve the equation
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)

Version vom 18:21, 3. Aug. 2008

 

Vorlage:Ej vald flik Vorlage:Vald flik

 

Exercise 4.4:1

For which angles \displaystyle \,v\,, where \displaystyle \,0 \leq v\leq 2\pi\,, does

a) \displaystyle \sin{v}=\displaystyle \frac{1}{2} b) \displaystyle \cos{v}=\displaystyle \frac{1}{2}
c) \displaystyle \sin{v}=1 d) \displaystyle \tan{v}=1
e) \displaystyle \cos{v}=2 f) \displaystyle \sin{v}=-\displaystyle \frac{1}{2}
g) \displaystyle \tan{v}=-\displaystyle \frac{1}{\sqrt{3}}

Exercise 4.4:2

Solve the equation

a) \displaystyle \sin{x}=\displaystyle \frac{\sqrt{3}}{2} b) \displaystyle \cos{x}=\displaystyle \frac{1}{2} c) \displaystyle \sin{x}=0
d) \displaystyle \sin{5x}=\displaystyle \frac{1}{\sqrt{2}} e) \displaystyle \sin{5x}=\displaystyle \frac{1}{2} f) \displaystyle \cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}

Exercise 4.4:3

Solve the equation

a) \displaystyle \cos{x}=\cos{\displaystyle \frac{\pi}{6}} b) \displaystyle \sin{x}=\sin{\displaystyle \frac{\pi}{5}}
c) \displaystyle \sin{(x+40^\circ)}=\sin{65^\circ} d) \displaystyle \sin{3x}=\sin{15^\circ}

Exercise 4.4:4

Determine the angles \displaystyle \,v\, in the interval \displaystyle \,0^\circ \leq v \leq 360^\circ\, which satisfy \displaystyle \ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,.


Exercise 4.4:5

Solve the equation

a) \displaystyle \sin{3x}=\sin{x} b) \displaystyle \tan{x}=\tan{4x}
c) \displaystyle \cos{5x}=\cos(x+\pi/5)

Exercise 4.4:6

Solve the equation

a) \displaystyle \sin x\cdot \cos 3x = 2\sin x b) \displaystyle \sqrt{2}\sin{x}\cos{x}=\cos{x}
c) \displaystyle \sin 2x = -\sin x

Exercise 4.4:7

Solve the equation

a) \displaystyle 2\sin^2{x}+\sin{x}=1 b) \displaystyle 2\sin^2{x}-3\cos{x}=0
c) \displaystyle \cos{3x}=\sin{4x}

Exercise 4.4:8

Solve the equation

a) \displaystyle \sin{2x}=\sqrt{2}\cos{x} b) \displaystyle \sin{x}=\sqrt{3}\cos{x}
c) \displaystyle \displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}