3.3 Übungen
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 110: | Zeile 110: | ||
{| width="100%" | {| width="100%" | ||
| width="100%" | | | width="100%" | | ||
- | Use the calculator on the right to calculate | + | Use the calculator on the right to calculate the following to three decimal places. (The button <tt>LN</tt> signifies the natural logarithm with base ''e''): |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) |
Version vom 14:10, 3. Aug. 2008
Exercise 3.3:1
What is \displaystyle \,x\, if
a) | \displaystyle 10^x=1\,000 | b) | \displaystyle 10^x=0{,}1 |
c) | \displaystyle \displaystyle \frac{1}{10^x}=100 | d) | \displaystyle \displaystyle \frac{1}{10^x}=0{,}000\,1 |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Exercise 3.3:2
Calculate
a) | \displaystyle \lg{ 0{,}1} | b) | \displaystyle \lg{ 10\,000} | c) | \displaystyle \lg {0{,}001} | d) | \displaystyle \lg {1} |
e) | \displaystyle 10^{\lg{2}} | f) | \displaystyle \lg{10^3} | g) | \displaystyle 10^{-\lg{0{,}1}} | h) | \displaystyle \lg{\displaystyle \frac{1}{10^2}} |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Lösning f
Lösning g
Lösning h
Exercise 3.3:3
Calculate
a) | \displaystyle \log_2{8} | b) | \displaystyle \log_9{\displaystyle \frac{1}{3}} | c) | \displaystyle \log_2{0{,}125} |
d) | \displaystyle \log_3{\left(9\cdot3^{1/3}\right)} | e) | \displaystyle 2^{\log_{\scriptstyle2}{4}} | f) | \displaystyle \log_2{4}+\log_2{\displaystyle \frac{1}{16}} |
g) | \displaystyle \log_3{12}-\log_3{4} | h) | \displaystyle \log_a{\bigl(a^2\sqrt{a}\,\bigr)} |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Lösning f
Lösning g
Lösning h
Exercise 3.3:4
Simplify
a) | \displaystyle \lg{50}-\lg{5} | b) | \displaystyle \lg{23}+\lg{\displaystyle \frac{1}{23}} | c) | \displaystyle \lg{27^{1/3}}+\displaystyle \frac{\lg{3}}{2}+\lg{\displaystyle \frac{1}{9}} |
Exercise 3.3:5
Simplify
a) | \displaystyle \ln{e^3}+\ln{e^2} | b) | \displaystyle \ln{8}-\ln{4}-\ln{2} | c) | \displaystyle (\ln{1})\cdot e^2 |
d) | \displaystyle \ln{e}-1 | e) | \displaystyle \ln{\displaystyle \frac{1}{e^2}} | f) | \displaystyle \left(e^{\ln{e}}\right)^2 |
Svar
Lösning a
Lösning b
Lösning c
Lösning d
Lösning e
Lösning f
Exercise 3.3:6
Use the calculator on the right to calculate the following to three decimal places. (The button LN signifies the natural logarithm with base e):
|