2.1 Algebraische Ausdrücke
Aus Online Mathematik Brückenkurs 1
K (Regerate images and tabs) |
|||
Zeile 2: | Zeile 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | | ||
- | {{Vald flik|[[2. | + | {{Vald flik|[[2.1algebraic expressions|Teori]]}} |
- | {{Ej vald flik|[[2.1 Övningar| | + | {{Ej vald flik|[[2.1 Övningar|Exercises]]}} |
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Content:''' |
- | * | + | * Distributive law |
- | * | + | * Squaring rules |
- | * | + | *Difference of two squares |
- | * | + | * Rational expression |
}} | }} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Learning outcomes:''' |
- | + | After this section, you will have learned how to: | |
- | * | + | *Simplify complex algebraic expression. |
- | * | + | *Factorise expressions using squaring rules and and the difference of two squares rule. |
- | * | + | *Expand expressions using squaring rules and and the difference of two squares rule. |
}} | }} | ||
- | == | + | == Distributive Law == |
[[Bild:miniräknare_skämt.gif|right]] | [[Bild:miniräknare_skämt.gif|right]] | ||
- | + | The distributive law specifies how to multiply a bracketed expression by a factor. | |
<center>{{:2.1 - Figur - Distributiva lagen}}</center> | <center>{{:2.1 - Figur - Distributiva lagen}}</center> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 1''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 47: | Zeile 47: | ||
</div> | </div> | ||
- | + | Using the distributive law, we can also see how to tackle | |
+ | a minus sign in front of a bracketed expression. | ||
+ | The rule says that bracket with a minus sign in front can be | ||
+ | eliminated if all the terms inside the brackets, switch signs. | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 2''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 56: | Zeile 59: | ||
<li><math>-(x^2-x) = (-1) \cdot (x^2-x) = (-1)x^2 -(-1)x | <li><math>-(x^2-x) = (-1) \cdot (x^2-x) = (-1)x^2 -(-1)x | ||
= -x^2 +x</math><br/> | = -x^2 +x</math><br/> | ||
- | + | where we have in the final step used <math>-(-1)x = (-1)(-1)x = 1\cdot x = x\,\mbox{.}</math></li> | |
<li><math>-(x+y-y^3) = (-1)\cdot (x+y-y^3) = (-1)\cdot x | <li><math>-(x+y-y^3) = (-1)\cdot (x+y-y^3) = (-1)\cdot x | ||
+ (-1) \cdot y -(-1)\cdot y^3</math><br/> | + (-1) \cdot y -(-1)\cdot y^3</math><br/> | ||
Zeile 65: | Zeile 68: | ||
</div> | </div> | ||
- | + | If the distributive law is applied in backwards we say we factor the expression. | |
+ | One often would like to to factorise out as large a numerical factor as possible. | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 3''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 79: | Zeile 83: | ||
- | == | + | == Squaring rules == |
- | + | The distributive law occasionally has to be used repeatedly to deal with larger expression. | |
+ | If we consider | ||
{{Fristående formel||<math>(a+b)(c+d)</math>}} | {{Fristående formel||<math>(a+b)(c+d)</math>}} | ||
- | + | and regard <math>a+b</math> as a factor that multiplies the bracketed expression(c+d) we get | |
{{Fristående formel||<math>\eqalign{ | {{Fristående formel||<math>\eqalign{ | ||
Zeile 94: | Zeile 99: | ||
&= (a+b)\,c + (a+b)\,d\mbox{.}}</math>}} | &= (a+b)\,c + (a+b)\,d\mbox{.}}</math>}} | ||
- | + | Then the <math>c</math> and the <math>d</math>are multiplied into their respective brackets, | |
{{Fristående formel||<math>(a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}</math>}} | {{Fristående formel||<math>(a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}</math>}} | ||
- | + | A mnemonic for this formula is: | |
<center>{{:2.1 - Figur - Distributiva lagen två gånger}}</center> | <center>{{:2.1 - Figur - Distributiva lagen två gånger}}</center> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 4''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 115: | Zeile 120: | ||
= 2-x-2x+x^2</math><br/> | = 2-x-2x+x^2</math><br/> | ||
<math>\phantom{(1-x)(2-x)}{}=2-3x+x^2</math> | <math>\phantom{(1-x)(2-x)}{}=2-3x+x^2</math> | ||
- | + | where we have used <math>-x\cdot (-x) = (-1)x \cdot (-1)x = (-1)^2 x^2 = 1\cdot x^2 = x^2</math>. | |
</ol> | </ol> | ||
</div> | </div> | ||
- | + | Two important special cases of the above formula is when <math>a+b</math> and <math>c+d</math> are the same expression | |
<div class="regel"> | <div class="regel"> | ||
- | ''' | + | '''Squaring rules ''' |
{{Fristående formel||<math>(a+b)^2 = a^2 +2ab + b^2</math>}} | {{Fristående formel||<math>(a+b)^2 = a^2 +2ab + b^2</math>}} | ||
{{Fristående formel||<math>(a-b)^2 = a^2 -2ab + b^2</math>}} | {{Fristående formel||<math>(a-b)^2 = a^2 -2ab + b^2</math>}} | ||
</div> | </div> | ||
- | + | These formulas are called the first and second squaring rules | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 5''' |
<ol type="a"> | <ol type="a"> | ||
<li><math>(x+2)^2 = x^2 + 2\cdot 2x+ 2^2 = x^2 +4x +4</math></li> | <li><math>(x+2)^2 = x^2 + 2\cdot 2x+ 2^2 = x^2 +4x +4</math></li> | ||
<li><math>(-x+3)^2 = (-x)^2 + 2\cdot 3(-x) + 3^2 = x^2 -6x +9</math> <br> | <li><math>(-x+3)^2 = (-x)^2 + 2\cdot 3(-x) + 3^2 = x^2 -6x +9</math> <br> | ||
- | : | + | : where <math>(-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \cdot x^2 = x^2\,\mbox{.}</math></li> |
<li><math>(x^2 -4)^2 = (x^2)^2 - 2 \cdot 4x^2 + 4^2 | <li><math>(x^2 -4)^2 = (x^2)^2 - 2 \cdot 4x^2 + 4^2 | ||
= x^4 -8x^2 +16</math></li> | = x^4 -8x^2 +16</math></li> | ||
Zeile 151: | Zeile 156: | ||
</div> | </div> | ||
- | + | The squaring rules are also used in the reverse direction to factorise expressions. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 6''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 165: | Zeile 170: | ||
- | == | + | == Difference of two squares == |
- | + | A third special case of the first formula in the last section is the difference of two squares rule. | |
<div class="regel"> | <div class="regel"> | ||
Zeile 174: | Zeile 179: | ||
</div> | </div> | ||
- | + | This formula can be obtained directly by expanding the left hand side | |
{{Fristående formel||<math>(a+b)(a-b) | {{Fristående formel||<math>(a+b)(a-b) | ||
Zeile 182: | Zeile 187: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 7''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 195: | Zeile 200: | ||
- | == | + | == Rational expressions== |
- | + | Calculations of fractions containing algebraic expressions are largely similar to ordinary calculations with fractions. | |
- | + | Multiplication and division of fractions containing algebraic expressions follow the same rules that apply to ordinary fractions, | |
<div class="regel"> | <div class="regel"> | ||
Zeile 210: | Zeile 215: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 8''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 223: | Zeile 228: | ||
</div> | </div> | ||
- | + | A fractional expression can have its numerator and denominator multiplied by the same factor | |
{{Fristående formel||<math>\frac{x+2}{x+1} | {{Fristående formel||<math>\frac{x+2}{x+1} | ||
Zeile 230: | Zeile 235: | ||
= \dots</math>}} | = \dots</math>}} | ||
- | + | The opposite of this, is cancellation, where we delete factors that the numerator and denominator have in common | |
- | + | ||
{{Fristående formel||<math>\frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) } | {{Fristående formel||<math>\frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) } | ||
= \frac{(x+2)(x+4)}{(x+1)(x+4)} | = \frac{(x+2)(x+4)}{(x+1)(x+4)} | ||
Zeile 237: | Zeile 241: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 9''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 250: | Zeile 254: | ||
</div> | </div> | ||
- | + | When fractional expressions are added or subtracted, they may need to be converted so that they have the same denominator before the numerators can be combined together, | |
+ | |||
{{Fristående formel||<math>\frac{1}{x} - \frac{1}{x-1} | {{Fristående formel||<math>\frac{1}{x} - \frac{1}{x-1} | ||
Zeile 258: | Zeile 263: | ||
= \frac{-1}{x(x-1)} \; \mbox{.}</math>}} | = \frac{-1}{x(x-1)} \; \mbox{.}</math>}} | ||
- | + | One normally tries to convert the fractions by multiplying the numerators and denominators by minimal factors to facilitate the calculations. The lowest common denominator (LCD) is the common denominator which contains the least number of factors. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 10''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>\frac{1}{x+1} + \frac{1}{x+2}\quad</math> | + | <li><math>\frac{1}{x+1} + \frac{1}{x+2}\quad</math> has <math>\ \text{LCD} |
= (x+1)(x+2)</math> <br><br> | = (x+1)(x+2)</math> <br><br> | ||
- | + | Convert the first term using <math>(x+2)</math> and the second term using <math>(x+1)</math> | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
\frac{1}{x+1} + \frac{1}{x+2} | \frac{1}{x+1} + \frac{1}{x+2} | ||
Zeile 273: | Zeile 278: | ||
= \frac{2x+3}{(x+1)(x+2)}\:\mbox{.} | = \frac{2x+3}{(x+1)(x+2)}\:\mbox{.} | ||
\end{align*}</math>}}</li> | \end{align*}</math>}}</li> | ||
- | <li><math>\frac{1}{x} + \frac{1}{x^2}\quad</math> | + | <li><math>\frac{1}{x} + \frac{1}{x^2}\quad</math> has <math>\ \text{LCD} |
= x^2</math><br><br> | = x^2</math><br><br> | ||
- | + | We only need to convert the first term to get a common denominator | |
{{Fristående formel||<math>\frac{1}{x} + \frac{1}{x^2} | {{Fristående formel||<math>\frac{1}{x} + \frac{1}{x^2} | ||
= \frac{x}{x^2} + \frac{1}{x^2} | = \frac{x}{x^2} + \frac{1}{x^2} | ||
= \frac{x+1}{x^2}\,\mbox{.}</math>}}</li> | = \frac{x+1}{x^2}\,\mbox{.}</math>}}</li> | ||
- | <li><math>\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad</math> | + | <li><math>\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad</math> has <math>\ |
- | \text{ | + | \text{LCD}= x^2(x+1)^2(x+2)</math><br><br> |
- | + | The first term is converted using <math>x(x+2)</math> while the other term is converted using <math>(x+1)^2</math> | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)} | \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)} | ||
Zeile 291: | Zeile 296: | ||
&= \frac{-1}{x^2(x+1)^2(x+2)}\,\mbox{.} | &= \frac{-1}{x^2(x+1)^2(x+2)}\,\mbox{.} | ||
\end{align*}</math>}}</li> | \end{align*}</math>}}</li> | ||
- | <li><math>\frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad</math> | + | <li><math>\frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad</math> has <math>\ |
- | \text{ | + | \text{LCD}=x(x-1)(x+1)</math><br><br> |
- | + | We must convert all the terms so that they have the common denominator <math>x(x-1)(x+1)</math> | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
\frac{x}{x+1} - \frac{1}{x(x-1)} -1 | \frac{x}{x+1} - \frac{1}{x(x-1)} -1 | ||
Zeile 307: | Zeile 312: | ||
</div> | </div> | ||
- | + | To simplify large expressions, it is often necessary to both cancel factors and multiply numerators and denominators by factors. As cancellation implies that we have performed factorisations, it is obvious we should try to keep expressions (such as the denominator) factorised and not expand something that we will later need to factorise. | |
+ | |||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 11''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 340: | Zeile 346: | ||
- | [[2.1 Övningar| | + | [[2.1 Övningar|Exercises]] |
<div class="inforuta" style="width:580px;"> | <div class="inforuta" style="width:580px;"> | ||
- | ''' | + | '''Study advice''' |
- | ''' | + | '''The basic and final tests'' |
- | + | After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge. | |
- | ''' | + | '''Keep in mind that: ''' |
- | + | Be careful. If you make a mistake somewhere the rest of the calculation will be wrong. | |
- | + | Use many intermediate steps . If you are unsure of a calculation do it in many small steps rather than one big step. | |
- | + | Do not expand unnecessarily. You later may be forced to faktorise what you earlier expanded. | |
- | ''' | + | '''Reviews |
+ | ''' | ||
- | [http://en.wikipedia.org/wiki/Algebra | + | [http://en.wikipedia.org/wiki/Algebra Learn more about algebra in the English Wikipedia ] |
- | [http://www.jamesbrennan.org/algebra/ Understanding Algebra - | + | [http://www.jamesbrennan.org/algebra/ Understanding Algebra - English text on the Web ] |
Version vom 12:31, 10. Jul. 2008
Content:
- Distributive law
- Squaring rules
- Difference of two squares
- Rational expression
Learning outcomes:
After this section, you will have learned how to:
- Simplify complex algebraic expression.
- Factorise expressions using squaring rules and and the difference of two squares rule.
- Expand expressions using squaring rules and and the difference of two squares rule.
Distributive Law
The distributive law specifies how to multiply a bracketed expression by a factor.
Example 1
- \displaystyle 4(x+y) = 4x + 4y
- \displaystyle 2(a-b) = 2a -2b
- \displaystyle x \left(\frac{1}{x} + \frac{1}{x^2} \right) = x\cdot \frac{1}{x} + x \cdot \frac{1}{x^2} = \frac{\not{x}}{\not{x}} + \frac{\not{x}}{x^{\not{2}}} = 1 + \frac{1}{x}
- \displaystyle a(x+y+z) = ax + ay + az
Using the distributive law, we can also see how to tackle a minus sign in front of a bracketed expression. The rule says that bracket with a minus sign in front can be eliminated if all the terms inside the brackets, switch signs.
Example 2
- \displaystyle -(x+y) = (-1) \cdot (x+y) = (-1)x + (-1)y = -x-y
- \displaystyle -(x^2-x) = (-1) \cdot (x^2-x) = (-1)x^2 -(-1)x
= -x^2 +x
where we have in the final step used \displaystyle -(-1)x = (-1)(-1)x = 1\cdot x = x\,\mbox{.} - \displaystyle -(x+y-y^3) = (-1)\cdot (x+y-y^3) = (-1)\cdot x
+ (-1) \cdot y -(-1)\cdot y^3
\displaystyle \phantom{-(x+y-y^3)}{} = -x-y+y^3 - \displaystyle x^2 - 2x -(3x+2) = x^2 -2x -3x-2 = x^2 -(2+3)x -2
\displaystyle \phantom{x^2-2x-(3x+2)}{} = x^2 -5x -2
If the distributive law is applied in backwards we say we factor the expression. One often would like to to factorise out as large a numerical factor as possible.
Example 3
- \displaystyle 3x +9y = 3x + 3\cdot 3y = 3(x+3y)
- \displaystyle xy + y^2 = xy + y\cdot y = y(x+y)
- \displaystyle 2x^2 -4x = 2x\cdot x - 2\cdot 2\cdot x = 2x(x-2)
- \displaystyle \frac{y-x}{x-y} = \frac{-(x-y)}{x-y} = \frac{-1}{1} = -1
Squaring rules
The distributive law occasionally has to be used repeatedly to deal with larger expression. If we consider
and regard \displaystyle a+b as a factor that multiplies the bracketed expression(c+d) we get
Then the \displaystyle c and the \displaystyle dare multiplied into their respective brackets,
A mnemonic for this formula is:
Example 4
- \displaystyle (x+1)(x-2) = x\cdot x + x \cdot (-2) + 1 \cdot x + 1 \cdot (-2)
= x^2 -2x+x-2
\displaystyle \phantom{(x+1)(x-2)}{}=x^2 -x-2 - \displaystyle 3(x-y)(2x+1) = 3(x\cdot 2x + x\cdot 1 - y \cdot 2x - y \cdot 1)
= 3(2x^2 +x-2xy-y)
\displaystyle \phantom{3(x-y)(2x+1)}{}=6x^2 +3x-6xy-3y - \displaystyle (1-x)(2-x) = 1\cdot 2 + 1 \cdot (-x) -x\cdot 2 - x\cdot (-x)
= 2-x-2x+x^2
\displaystyle \phantom{(1-x)(2-x)}{}=2-3x+x^2 where we have used \displaystyle -x\cdot (-x) = (-1)x \cdot (-1)x = (-1)^2 x^2 = 1\cdot x^2 = x^2.
Two important special cases of the above formula is when \displaystyle a+b and \displaystyle c+d are the same expression
Squaring rules Vorlage:Fristående formel Vorlage:Fristående formel
These formulas are called the first and second squaring rules
Example 5
- \displaystyle (x+2)^2 = x^2 + 2\cdot 2x+ 2^2 = x^2 +4x +4
- \displaystyle (-x+3)^2 = (-x)^2 + 2\cdot 3(-x) + 3^2 = x^2 -6x +9
- where \displaystyle (-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \cdot x^2 = x^2\,\mbox{.}
- \displaystyle (x^2 -4)^2 = (x^2)^2 - 2 \cdot 4x^2 + 4^2 = x^4 -8x^2 +16
- \displaystyle (x+1)^2 - (x-1)^2 = (x^2 +2x +1)- (x^2-2x+1)
\displaystyle \phantom{(x+1)^2-(x-1)^2}{}= x^2 +2x +1 -x^2 + 2x-1
\displaystyle \phantom{(x+1)^2-(x-1)^2}{} = 2x+2x = 4x - \displaystyle (2x+4)(x+2) = 2(x+2)(x+2) = 2(x+2)^2 = 2(x^2 + 4x+ 4)
\displaystyle \phantom{(2x+4)(x+2)}{}=2x^2 + 8x + 8 - \displaystyle (x-2)^3 = (x-2)(x-2)^2 = (x-2)(x^2-4x+4)
\displaystyle \phantom{(x-2)^3}{}=x \cdot x^2 + x\cdot (-4x) + x\cdot 4 - 2\cdot x^2 - 2 \cdot (-4x)-2 \cdot 4
\displaystyle \phantom{(x-2)^3}{}=x^3 -4x^2 + 4x-2x^2 +8x -8 = x^3-6x^2 + 12x -8
The squaring rules are also used in the reverse direction to factorise expressions.
Example 6
- \displaystyle x^2 + 2x+ 1 = (x+1)^2
- \displaystyle x^6-4x^3 +4 = (x^3)^2 - 2\cdot 2x^3 +2^2 = (x^3-2)^2
- \displaystyle x^2 +x + \frac{1}{4} = x^2 + 2\cdot\frac{1}{2}x + \bigl(\frac{1}{2}\bigr)^2 = \bigl(x+\frac{1}{2}\bigr)^2
Difference of two squares
A third special case of the first formula in the last section is the difference of two squares rule.
Konjugatregeln: Vorlage:Fristående formel
This formula can be obtained directly by expanding the left hand side
Example 7
- \displaystyle (x-4y)(x+4y) = x^2 -(4y)^2 = x^2 -16y^2
- \displaystyle (x^2+2x)(x^2-2x)= (x^2)^2 - (2x)^2 = x^4 -4x^2
- \displaystyle (y+3)(3-y)= (3+y)(3-y) = 3^2 -y^2 = 9-y^2
- \displaystyle x^4 -16 = (x^2)^2 -4^2 = (x^2+4)(x^2-4)
= (x^2+4)(x^2-2^2)
\displaystyle \phantom{x^4-16}{}=(x^2+4)(x+2)(x-2)
Rational expressions
Calculations of fractions containing algebraic expressions are largely similar to ordinary calculations with fractions.
Multiplication and division of fractions containing algebraic expressions follow the same rules that apply to ordinary fractions,
Example 8
- \displaystyle \frac{3x}{x-y} \cdot \frac{4x}{2x+y} = \frac{3x\cdot 4x}{(x-y)\cdot(2x+y)} = \frac{12x^2}{(x-y)(2x+y)}
- \displaystyle \frac{\displaystyle \frac{a}{x}}{\displaystyle \frac{x+1}{a}} = \frac{a^2}{x(x+1)}
- \displaystyle \frac{\displaystyle \frac{x}{(x+1)^2}}{\displaystyle \frac{x-2}{x-1}} = \frac{x(x-1)}{(x-2)(x+1)^2}
A fractional expression can have its numerator and denominator multiplied by the same factor
The opposite of this, is cancellation, where we delete factors that the numerator and denominator have in common Vorlage:Fristående formel
Example 9
- \displaystyle \frac{x}{x+1} = \frac{x}{x+1} \cdot \frac{x+2}{x+2} = \frac{x(x+2)}{(x+1)(x+2)}
- \displaystyle \frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}
- \displaystyle \frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)} = \left\{\,\text{konjugatregeln}\,\right\} = \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)} = \frac{x-y}{x+2}
When fractional expressions are added or subtracted, they may need to be converted so that they have the same denominator before the numerators can be combined together,
One normally tries to convert the fractions by multiplying the numerators and denominators by minimal factors to facilitate the calculations. The lowest common denominator (LCD) is the common denominator which contains the least number of factors.
Example 10
- \displaystyle \frac{1}{x+1} + \frac{1}{x+2}\quad has \displaystyle \ \text{LCD}
= (x+1)(x+2)
Convert the first term using \displaystyle (x+2) and the second term using \displaystyle (x+1) Vorlage:Fristående formel - \displaystyle \frac{1}{x} + \frac{1}{x^2}\quad has \displaystyle \ \text{LCD}
= x^2
We only need to convert the first term to get a common denominator Vorlage:Fristående formel - \displaystyle \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad has \displaystyle \
\text{LCD}= x^2(x+1)^2(x+2)
The first term is converted using \displaystyle x(x+2) while the other term is converted using \displaystyle (x+1)^2 Vorlage:Fristående formel - \displaystyle \frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad has \displaystyle \
\text{LCD}=x(x-1)(x+1)
We must convert all the terms so that they have the common denominator \displaystyle x(x-1)(x+1) Vorlage:Fristående formel
To simplify large expressions, it is often necessary to both cancel factors and multiply numerators and denominators by factors. As cancellation implies that we have performed factorisations, it is obvious we should try to keep expressions (such as the denominator) factorised and not expand something that we will later need to factorise.
Example 11
- \displaystyle \frac{1}{x-2} - \frac{4}{x^2-4}
= \frac{1}{x-2} - \frac{4}{(x+2)(x-2)}
= \left\{\,\mbox{MGN}
= (x+2)(x-2)\,\right\}
\displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2}{(x+2)(x-2)} - \frac{4}{(x+2)(x-2)}
\displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2 -4}{(x+2)(x-2)} = \frac{x-2}{(x+2)(x-2)} = \frac{1}{x+2} - \displaystyle \frac{x + \displaystyle \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2}{x} + \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2+1}{x}}{x^2+1} = \frac{x^2+1}{x(x^2+1)} = \frac{1}{x}
- \displaystyle \frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y}
= \frac{\displaystyle \frac{y^2}{x^2y^2} - \frac{x^2}{x^2y^2}}{x+y}
= \frac{\displaystyle \frac{y^2-x^2}{x^2y^2}}{x+y}
= \frac{y^2-x^2}{x^2y^2(x+y)}
\displaystyle \phantom{\smash{\frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y}}}{} = \frac{(y+x)(y-x)}{x^2y^2(x+y)} = \frac{y-x}{x^2y^2}
Study advice
'The basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that:
Be careful. If you make a mistake somewhere the rest of the calculation will be wrong.
Use many intermediate steps . If you are unsure of a calculation do it in many small steps rather than one big step.
Do not expand unnecessarily. You later may be forced to faktorise what you earlier expanded.
Reviews
Learn more about algebra in the English Wikipedia
Understanding Algebra - English text on the Web
Länktips