1.3 Potenzen
Aus Online Mathematik Brückenkurs 1
K (Regerate images and tabs) |
|||
Zeile 8: | Zeile 8: | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Content: ''' |
- | * | + | * Positive integer exponent |
- | * | + | * Negative integer exponent |
- | * | + | * Rational exponents |
- | * | + | * Laws of exponents |
}} | }} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Learning outcomes:''' |
- | + | After this section, you will have learned to: | |
- | * | + | * Recognise the concepts of base and exponent. |
- | * | + | *Calculate integer power expressions |
- | * | + | *Use the laws of exponents to simplify expressions containg powers. |
- | * | + | * Know when the laws of exponents are applicable (positive basis). |
- | * | + | *Determining which of two powers is the largest based on a comparison of the |
+ | base / exponent. | ||
}} | }} | ||
- | == | + | == Integer exponents == |
- | + | We use the multiplication symbol as a short-hand for repeated addition of the same number, for example, | |
- | + | ||
{{Fristående formel||<math>4 + 4 + 4 + 4 + 4 = 4 \cdot 5\mbox{.}</math>}} | {{Fristående formel||<math>4 + 4 + 4 + 4 + 4 = 4 \cdot 5\mbox{.}</math>}} | ||
- | + | In a similar way we use exponentials as a short-hand for repeated multiplication | |
+ | of the same number: | ||
{{Fristående formel||<math> 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5\mbox{.}</math>}} | {{Fristående formel||<math> 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5\mbox{.}</math>}} | ||
- | + | The 4 is called the base of the power, and the 5 is its exponent. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | '''Example 1 ''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 76: | Zeile 77: | ||
</div> | </div> | ||
- | + | The last example can be generalised to two useful rules when calculating powers: | |
<div class="regel"> | <div class="regel"> | ||
Zeile 83: | Zeile 84: | ||
- | == | + | == Laws of exponents == |
- | + | There are a few more rules coming from the definition of power which are useful when doing calculations.You can see for example that | |
{{Fristående formel||<math>2^3 \cdot 2^5 = \underbrace{\,2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm st }} \cdot \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 5\ {\rm st }} = \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ (3 + 5)\ {\rm st}} = 2^{3+5} = 2^8</math>}} | {{Fristående formel||<math>2^3 \cdot 2^5 = \underbrace{\,2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm st }} \cdot \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 5\ {\rm st }} = \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ (3 + 5)\ {\rm st}} = 2^{3+5} = 2^8</math>}} | ||
- | + | which generally can be expressed as | |
<div class="regel"> | <div class="regel"> | ||
{{Fristående formel||<math>a^m \cdot a^n = a^{m+n}\mbox{.}</math>}} | {{Fristående formel||<math>a^m \cdot a^n = a^{m+n}\mbox{.}</math>}} | ||
</div> | </div> | ||
- | + | There is also a useful simplification rule for division of powers which have the same base. | |
{{Fristående formel||<math>\frac{2^7}{2^3}=\displaystyle\frac{ 2\cdot 2\cdot 2\cdot 2\cdot \not{2}\cdot \not{2}\cdot \not{2} }{ \not{2}\cdot \not{2}\cdot \not{2}} = 2^{7-3}=2^4\mbox{.}</math>}} | {{Fristående formel||<math>\frac{2^7}{2^3}=\displaystyle\frac{ 2\cdot 2\cdot 2\cdot 2\cdot \not{2}\cdot \not{2}\cdot \not{2} }{ \not{2}\cdot \not{2}\cdot \not{2}} = 2^{7-3}=2^4\mbox{.}</math>}} | ||
- | + | The general rule is | |
<div class="regel"> | <div class="regel"> | ||
{{Fristående formel||<math>\displaystyle\frac{a^m}{a^n}= a^{m-n}\mbox{.}</math>}} | {{Fristående formel||<math>\displaystyle\frac{a^m}{a^n}= a^{m-n}\mbox{.}</math>}} | ||
</div> | </div> | ||
- | + | For the case when the base itself is a power that is the power of a power one has another useful rule. We see that | |
- | + | ||
{{Fristående formel||<math> (5^2)^3 = 5^2 \cdot 5^2 \cdot 5^2 = \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm st}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm st}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm st}} = \underbrace{\,5\cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm gånger}\ 2\ {\rm st}} = 5^{2 \cdot 3} = 5^6\mbox{.}</math>}} | {{Fristående formel||<math> (5^2)^3 = 5^2 \cdot 5^2 \cdot 5^2 = \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm st}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm st}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm st}} = \underbrace{\,5\cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm gånger}\ 2\ {\rm st}} = 5^{2 \cdot 3} = 5^6\mbox{.}</math>}} | ||
- | + | and | |
{{Fristående formel||<math> (5^3)^2 = 5^3\cdot5^3= \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm st}} \cdot \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm st}} = \underbrace{\,5\cdot 5 \cdot 5\,\cdot\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm gånger}\ 3\ {\rm st}}=5^{3\cdot2}=5^6\mbox{.}</math>}} | {{Fristående formel||<math> (5^3)^2 = 5^3\cdot5^3= \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm st}} \cdot \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm st}} = \underbrace{\,5\cdot 5 \cdot 5\,\cdot\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm gånger}\ 3\ {\rm st}}=5^{3\cdot2}=5^6\mbox{.}</math>}} | ||
- | + | Generally, this can be written | |
<div class="regel"> | <div class="regel"> | ||
{{Fristående formel||<math>(a^m)^n = a^{m \cdot n}\mbox{.} </math>}} | {{Fristående formel||<math>(a^m)^n = a^{m \cdot n}\mbox{.} </math>}} | ||
Zeile 119: | Zeile 119: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 3''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 144: | Zeile 144: | ||
- | + | If a fraction has the same power (expression) both in the numerator and the denominator we can simplify in two ways: | |
{{Fristående formel||<math>\frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{samtidigt som}\quad \frac{5^3}{5^3} = \frac{ 5 \cdot 5 \cdot 5 }{ 5 \cdot 5 \cdot 5 } = \frac{125}{125} = 1\mbox{.}</math>}} | {{Fristående formel||<math>\frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{samtidigt som}\quad \frac{5^3}{5^3} = \frac{ 5 \cdot 5 \cdot 5 }{ 5 \cdot 5 \cdot 5 } = \frac{125}{125} = 1\mbox{.}</math>}} | ||
- | + | The only way for the rules of powers to agree is to make the | |
+ | following but natural definition that for all non zero ''a'' one has that | ||
+ | |||
<div class="regel"> | <div class="regel"> | ||
Zeile 154: | Zeile 156: | ||
</div> | </div> | ||
- | + | We can also run into examples where the exponent in the denominator is greater than that in the numerator. We can have, for example, | |
{{Fristående formel||<math>\frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{och}\quad \frac{3^4}{3^6} = \frac{\not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} }{ \not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} \cdot 3 \cdot 3} = \frac{1}{3 \cdot 3} = \frac{1}{3^2}\mbox{.}</math>}} | {{Fristående formel||<math>\frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{och}\quad \frac{3^4}{3^6} = \frac{\not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} }{ \not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} \cdot 3 \cdot 3} = \frac{1}{3 \cdot 3} = \frac{1}{3^2}\mbox{.}</math>}} | ||
- | + | We see that it is necessary to assume that the negative exponent implies that | |
{{Fristående formel||<math>3^{-2} = \frac{1}{3^2}\mbox{.}</math>}} | {{Fristående formel||<math>3^{-2} = \frac{1}{3^2}\mbox{.}</math>}} | ||
- | Den allmänna definitionen av negativa exponenter är att, för alla tal ''a'' som inte är 0 gäller att | ||
+ | The general definition of negative exponents is to interpret negative exponents | ||
+ | of all non zero numbers ''a'' as follows | ||
<div class="regel"> | <div class="regel"> | ||
{{Fristående formel||<math>a^{-n} = \frac{1}{a^n}\mbox{.}</math>}} | {{Fristående formel||<math>a^{-n} = \frac{1}{a^n}\mbox{.}</math>}} | ||
Zeile 168: | Zeile 171: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 5''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 188: | Zeile 191: | ||
</div> | </div> | ||
- | + | If the base of a power is <math>-1</math> s then the expression will simplify to either <math>-1</math> or <math>+1</math> depending on the value of the exponent | |
{{Fristående formel||<math>\eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{osv.}}</math>}} | {{Fristående formel||<math>\eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{osv.}}</math>}} | ||
- | + | The rule is that <math>(-1)^n</math> is equal to<math>-1</math> | |
+ | if <math>n</math>is odd and equal to <math>+1</math> if <math>n</math>is even . | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 6''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>(-1)^{56} = 1\quad</math> | + | <li><math>(-1)^{56} = 1\quad</math> as <math>56</math> is an even number </li> |
- | <li><math>\frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad</math> | + | <li><math>\frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad</math> because 11 is an odd number </li> |
<li><math>\frac{(-2)^{127}}{2^{130}} = \frac{(-1 \cdot 2)^{127}}{2^{130}} | <li><math>\frac{(-2)^{127}}{2^{130}} = \frac{(-1 \cdot 2)^{127}}{2^{130}} | ||
= \frac{(-1)^{127} \cdot 2^{127}}{2^{130}} | = \frac{(-1)^{127} \cdot 2^{127}}{2^{130}} | ||
Zeile 210: | Zeile 214: | ||
- | == | + | ==Changing the base == |
- | + | A point to observe is that when simplifying expressions try, if possible, to combine powers by choosing the same base. This often involves selecting 2, 3 or 5 as a base and, therefore, it is a good idea to learn to recognize the powers of these numbers, such as | |
{{Fristående formel||<math>4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots</math>}} | {{Fristående formel||<math>4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots</math>}} | ||
Zeile 220: | Zeile 224: | ||
{{Fristående formel||<math>25=5^2,\;\; 125=5^3,\;\; 625=5^4,\;\ldots</math>}} | {{Fristående formel||<math>25=5^2,\;\; 125=5^3,\;\; 625=5^4,\;\ldots</math>}} | ||
- | + | But even | |
{{Fristående formel||<math>\frac{1}{4}=\frac{1}{2^2} = 2^{-2},\;\; \frac{1}{8}=\frac{1}{2^3}=2^{-3},\;\; \frac{1}{16}=\frac{1}{2^4}=2^{-4},\;\ldots</math>}} | {{Fristående formel||<math>\frac{1}{4}=\frac{1}{2^2} = 2^{-2},\;\; \frac{1}{8}=\frac{1}{2^3}=2^{-3},\;\; \frac{1}{16}=\frac{1}{2^4}=2^{-4},\;\ldots</math>}} | ||
Zeile 228: | Zeile 232: | ||
{{Fristående formel||<math>\frac{1}{25}=\frac{1}{5^2}=5^{-2},\;\; \frac{1}{125}=\frac{1}{5^3}=5^{-3},\;\ldots</math>}} | {{Fristående formel||<math>\frac{1}{25}=\frac{1}{5^2}=5^{-2},\;\; \frac{1}{125}=\frac{1}{5^3}=5^{-3},\;\ldots</math>}} | ||
- | + | and so on. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 7''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> Write <math>\ 8^3 \cdot 4^{-2} \cdot 16\ </math> s as a power with base 2 |
<br/> | <br/> | ||
<br/> | <br/> | ||
Zeile 240: | Zeile 244: | ||
:<math>\qquad\quad{}= 2^9 \cdot 2^{-4} \cdot 2^4 = 2^{9-4+4} =2^9</math></li> | :<math>\qquad\quad{}= 2^9 \cdot 2^{-4} \cdot 2^4 = 2^{9-4+4} =2^9</math></li> | ||
- | <li> | + | <li> Write <math>\ \frac{27^2 \cdot (1/9)^{-2}}{81^2}\ </math> as a power with base 3. |
<br/> | <br/> | ||
<br/> | <br/> | ||
Zeile 246: | Zeile 250: | ||
:<math>\qquad\quad{} = \frac{3^{3 \cdot 2} \cdot 3^{(-2) \cdot (-2)}}{3^{4 \cdot 2}} = \frac{3^6\cdot 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2</math></li> | :<math>\qquad\quad{} = \frac{3^{3 \cdot 2} \cdot 3^{(-2) \cdot (-2)}}{3^{4 \cdot 2}} = \frac{3^6\cdot 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2</math></li> | ||
- | <li> | + | <li> Write <math>\frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4}</math> in as simple a form as possible. |
<br/> | <br/> | ||
<br/> | <br/> | ||
Zeile 255: | Zeile 259: | ||
- | == | + | == Rational exponents == |
- | + | What happens if a number is raised to a rational exponent? Do the the definitions and the rules we have used above to do calculations still hold? | |
- | + | For instance, since | |
{{Fristående formel||<math>2^{1/2} \cdot 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2</math>}} | {{Fristående formel||<math>2^{1/2} \cdot 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2</math>}} | ||
- | + | so <math> 2^{1/2} </math> must be the same as <math>\sqrt{2}</math> because <math>\sqrt2</math> is defined as the number which satisfies <math>\sqrt2\cdot\sqrt2 = 2</math> . | |
- | + | Generally, we define | |
<div class="regel"> | <div class="regel"> | ||
Zeile 269: | Zeile 273: | ||
</div> | </div> | ||
- | + | We must assume that t <math>a\ge 0</math>, ince no real number multiplied by itself can give a negative number. | |
- | + | We also see that, for example, | |
{{Fristående formel||<math>5^{1/3} \cdot 5^{1/3} \cdot 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5</math>}} | {{Fristående formel||<math>5^{1/3} \cdot 5^{1/3} \cdot 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5</math>}} | ||
- | + | which means that math>\,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\,</math> which can be generalised to | |
<div class="regel"> | <div class="regel"> | ||
Zeile 280: | Zeile 284: | ||
</div> | </div> | ||
- | + | By combining this definition with one of the previous laws of exponents <math>((a^m)^n=a^{m\cdot n})</math> means that, for all<math>a\ge0</math> it holds that | |
<div class="regel"> | <div class="regel"> | ||
{{Fristående formel||<math>a^{m/n} = (a^m)^{1/n} = \sqrt[\scriptstyle n]{a^m}</math>}} | {{Fristående formel||<math>a^{m/n} = (a^m)^{1/n} = \sqrt[\scriptstyle n]{a^m}</math>}} | ||
- | + | or | |
{{Fristående formel||<math>a^{m/n} = (a^{1/n})^m = (\sqrt[\scriptstyle n]{a}\,)^m\mbox{.} </math>}} | {{Fristående formel||<math>a^{m/n} = (a^{1/n})^m = (\sqrt[\scriptstyle n]{a}\,)^m\mbox{.} </math>}} | ||
Zeile 291: | Zeile 295: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 8''' |
<ol type="a"> | <ol type="a"> | ||
Zeile 309: | Zeile 313: | ||
- | == | + | ==Comparison of powers == |
- | + | If we do not have access to calculators and wish to compare the size of powers, one can sometimes achieve this by comparing bases or exponents. | |
- | + | If the base of a power greater than <math>1</math> s then the power is larger the larger the exponent. On the other hand, if the base lies between <math>0</math> and <math>1</math> then the power decreases as the exponent grows. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 9''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>\quad 3^{5/6} > 3^{3/4}\quad</math> | + | <li><math>\quad 3^{5/6} > 3^{3/4}\quad</math> as the base <math>3</math> is greater than <math>1</math> and the first exponent <math>5/6</math> is greater than the second exponent <math>3/4</math>.</li> |
- | <li><math>\quad 3^{-3/4} > 3^{-5/6}\quad</math> | + | <li><math>\quad 3^{-3/4} > 3^{-5/6}\quad</math> as the base is greater than <math>1</math> and the exponents satisfy <math> -3/4 > - 5/6</math>.</li> |
- | <li><math> \quad 0{,}3^5 < 0{,}3^4 \quad</math> | + | <li><math> \quad 0{,}3^5 < 0{,}3^4 \quad</math>as the base <math> 0{,}3</math> is between <math>0</math> and <math>1</math> and <math>5 > 4</math>. |
</ol> | </ol> | ||
</div> | </div> | ||
- | + | If a power has a positive exponent, it will larger the larger the base is . The opposite applies if exponent is negative: that is the power decreases as the base gets larger. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 10''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>\quad 5^{3/2} > 4^{3/2}\quad</math> | + | <li><math>\quad 5^{3/2} > 4^{3/2}\quad</math> as the base <math>5</math> is larger than the base <math>4</math> and both powers have the same positive exponent <math>3/2</math>.</li> |
- | <li><math> \quad 2^{-5/3} > 3^{-5/3}\quad</math> | + | <li><math> \quad 2^{-5/3} > 3^{-5/3}\quad</math> as the bases satisfy <math>2<3</math> and the powers have a negative exponent <math>-5/3</math>.</li> |
</ol> | </ol> | ||
</div> | </div> | ||
- | + | Sometimes powers must be rewritten in order to determine the relative sizes. For example to compare <math>125^2</math> with <math>36^3</math>one can rewrite them as | |
{{Fristående formel||<math> | {{Fristående formel||<math> | ||
125^2 = (5^3)^2 = 5^6\quad \text{och}\quad 36^3 = (6^2)^3 = 6^6 | 125^2 = (5^3)^2 = 5^6\quad \text{och}\quad 36^3 = (6^2)^3 = 6^6 | ||
</math>}} | </math>}} | ||
- | + | after which one can see that <math>36^3 > 125^2</math>. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 11''' |
- | + | Determine which of the following pairs of numbers is the greater | |
<ol type="a"> | <ol type="a"> | ||
Zeile 352: | Zeile 356: | ||
<br> | <br> | ||
<br> | <br> | ||
- | + | The base 25 can be written about in terms of the second base <math>5</math>by putting<math>25= 5\cdot 5= 5^2</math>. Therefore | |
{{Fristående formel||<math>25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3}</math>}} | {{Fristående formel||<math>25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3}</math>}} | ||
- | + | and then we see that | |
{{Fristående formel||<math>5^{3/4} > 25^{1/3} </math>}} | {{Fristående formel||<math>5^{3/4} > 25^{1/3} </math>}} | ||
- | + | since <math>\frac{3}{4} > \frac{2}{3}</math> and the base <math>5</math> is larger than <math>1</math>.</li> | |
<li><math>(\sqrt{8}\,)^5 </math> och <math>128</math>. | <li><math>(\sqrt{8}\,)^5 </math> och <math>128</math>. | ||
<br> | <br> | ||
<br> | <br> | ||
- | + | Both <math>8</math> and <math>128</math> can be written as powers of <math>2</math> | |
{{Fristående formel||<math>\eqalign{8 &= 2\cdot 4 = 2 \cdot 2 \cdot 2 = 2^3\mbox{,}\\ 128 &= 2\cdot 64 = 2\cdot 2\cdot 32 = 2\cdot 2\cdot 2\cdot 16 = 2\cdot 2\cdot 2\cdot 2\cdot 8\\ &= 2\cdot 2\cdot 2\cdot 2\cdot 2^3 = 2^7\mbox{.}}</math>}} | {{Fristående formel||<math>\eqalign{8 &= 2\cdot 4 = 2 \cdot 2 \cdot 2 = 2^3\mbox{,}\\ 128 &= 2\cdot 64 = 2\cdot 2\cdot 32 = 2\cdot 2\cdot 2\cdot 16 = 2\cdot 2\cdot 2\cdot 2\cdot 8\\ &= 2\cdot 2\cdot 2\cdot 2\cdot 2^3 = 2^7\mbox{.}}</math>}} | ||
- | + | This means that | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
Zeile 377: | Zeile 381: | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | + | and thus | |
{{Fristående formel||<math>(\sqrt{8}\,)^5 > 128 </math>}} | {{Fristående formel||<math>(\sqrt{8}\,)^5 > 128 </math>}} | ||
- | + | because <math>\frac{15}{2} > \frac{14}{2}</math> and the base <math>2</math> is greater than <math>1</math>.</li> | |
<li><math> (8^2)^{1/5} </math> och <math> (\sqrt{27}\,)^{4/5}</math>. | <li><math> (8^2)^{1/5} </math> och <math> (\sqrt{27}\,)^{4/5}</math>. | ||
<br> | <br> | ||
<br> | <br> | ||
- | + | Since <math>8=2^3</math> and <math>27=3^3</math> a first step can be to simplify and write the numbers as powers of <math>2</math> and <math>3</math> respectively, | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
Zeile 397: | Zeile 401: | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | + | Now we see that | |
{{Fristående formel||<math>(\sqrt{27}\,)^{4/5} > (8^2)^{1/5} </math>}} | {{Fristående formel||<math>(\sqrt{27}\,)^{4/5} > (8^2)^{1/5} </math>}} | ||
- | + | because <math> 3>2</math> nd exponent<math>\frac{6}{5}</math> is positive. | |
<li><math> 3^{1/3} </math> och <math> 2^{1/2}</math> | <li><math> 3^{1/3} </math> och <math> 2^{1/2}</math> | ||
<br> | <br> | ||
<br> | <br> | ||
- | + | We rewrite the exponents so they have a common denominator | |
- | {{Fristående formel||<math>\frac{1}{3} = \frac{2}{6} \quad</math> | + | {{Fristående formel||<math>\frac{1}{3} = \frac{2}{6} \quad</math> and <math>\quad \frac{1}{2} = \frac{3}{6}</math>.}} |
- | + | Then we have that | |
{{Fristående formel||<math>\begin{align*} | {{Fristående formel||<math>\begin{align*} | ||
Zeile 417: | Zeile 421: | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | + | and we see that | |
{{Fristående formel||<math> 3^{1/3} > 2^{1/2} </math>}} | {{Fristående formel||<math> 3^{1/3} > 2^{1/2} </math>}} | ||
- | + | because <math> 9>8</math> and the exponent<math>1/6</math> is positive.</li> | |
</ol> | </ol> | ||
</div> | </div> | ||
- | [[1.3 Övningar| | + | [[1.3 Övningar|Exercises]] |
<div class="inforuta" style="width:580px;"> | <div class="inforuta" style="width:580px;"> | ||
- | ''' | + | '''Study advice'' |
- | ''' | + | '''Basic and final tests''' |
- | + | After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge. | |
- | ''' | + | '''Keep in mind that:''' |
- | + | The number raised to the power 0, is always 1, if the number (the base) is not 0. | |
- | ''' | + | '''Reviews''' |
- | + | For those of you who want to deepen your studies or need more detailed explanations consider the following references | |
- | [http://en.wikipedia.org/wiki/Exponent | + | [http://en.wikipedia.org/wiki/Exponent Learn more about powers in the English Wikipedi] |
- | [http://primes.utm.edu/ | + | [http://primes.utm.edu/ What is the greatest prime number? Read more at The Prime Page] |
'''Länktips''' | '''Länktips''' | ||
- | [http://www.ltcconline.net/greenl/java/BasicAlgebra/ExponentRules/ExponentRules.html | + | [http://www.ltcconline.net/greenl/java/BasicAlgebra/ExponentRules/ExponentRules.html Here you can practise the laws of exponents] |
</div> | </div> |
Version vom 12:51, 9. Jul. 2008
Content:
- Positive integer exponent
- Negative integer exponent
- Rational exponents
- Laws of exponents
Learning outcomes:
After this section, you will have learned to:
- Recognise the concepts of base and exponent.
- Calculate integer power expressions
- Use the laws of exponents to simplify expressions containg powers.
- Know when the laws of exponents are applicable (positive basis).
- Determining which of two powers is the largest based on a comparison of the
base / exponent.
Integer exponents
We use the multiplication symbol as a short-hand for repeated addition of the same number, for example,
In a similar way we use exponentials as a short-hand for repeated multiplication of the same number:
The 4 is called the base of the power, and the 5 is its exponent.
Example 1
- \displaystyle 5^3 = 5 \cdot 5 \cdot 5 = 125
- \displaystyle 10^5 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 100 000
- \displaystyle 0{,}1^3 = 0{,}1 \cdot 0{,}1 \cdot 0{,}1 = 0{,}001
- \displaystyle (-2)^4 = (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16, men \displaystyle -2^4 = -(2^4) = - (2 \cdot 2 \cdot 2 \cdot 2) = -16
- \displaystyle 2\cdot 3^2 = 2 \cdot 3 \cdot 3 = 18, men \displaystyle (2\cdot3)^2 = 6^2 = 36
Exempel 2
- \displaystyle \left(\displaystyle\frac{2}{3}\right)^3 = \displaystyle\frac{2}{3}\cdot \displaystyle\frac{2}{3} \cdot \displaystyle\frac{2}{3} = \displaystyle\frac{2^3}{3^3} = \displaystyle\frac{8}{27}
- \displaystyle (2\cdot 3)^4
= (2\cdot 3)\cdot(2\cdot 3)\cdot(2\cdot 3)\cdot(2\cdot 3)
\displaystyle \phantom{(2\cdot 3)^4}{} = 2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 3\cdot 3\cdot 3 = 2^4 \cdot 3^4 = 1296
The last example can be generalised to two useful rules when calculating powers:
Laws of exponents
There are a few more rules coming from the definition of power which are useful when doing calculations.You can see for example that
which generally can be expressed as
There is also a useful simplification rule for division of powers which have the same base.
The general rule is
For the case when the base itself is a power that is the power of a power one has another useful rule. We see that
and
Generally, this can be written
Example 3
- \displaystyle 2^9 \cdot 2^{14} = 2^{9+14} = 2^{23}
- \displaystyle 5\cdot5^3 = 5^1\cdot5^3 = 5^{1+3} = 5^4
- \displaystyle 3^2 \cdot 3^3 \cdot 3^4 = 3^{2+3+4} = 3^9
- \displaystyle 10^5 \cdot 1000 = 10^5 \cdot 10^3 = 10^{5+3} = 10^8
Exempel 4
- \displaystyle \frac{3^{100}}{3^{98}} = 3^{100-98} = 3^2
- \displaystyle \frac{7^{10}}{7} = \frac{7^{10}}{7^1} = 7^{10-1} = 7^9
If a fraction has the same power (expression) both in the numerator and the denominator we can simplify in two ways:
Vorlage:Fristående formel
The only way for the rules of powers to agree is to make the
following but natural definition that for all non zero a one has that
We can also run into examples where the exponent in the denominator is greater than that in the numerator. We can have, for example, Vorlage:Fristående formel
We see that it is necessary to assume that the negative exponent implies that Vorlage:Fristående formel
The general definition of negative exponents is to interpret negative exponents
of all non zero numbers a as follows
Example 5
- \displaystyle \frac{7^{1293}}{7^{1293}} = 7^{1293 - 1293} = 7^0 = 1
- \displaystyle 3^7 \cdot 3^{-9} \cdot 3^4 = 3^{7+(-9)+4} = 3^2
- \displaystyle 0{,}001 = \frac{1}{1000} = \frac{1}{10^3} = 10^{-3}
- \displaystyle 0{,}008 = \frac{8}{1000} = \frac{1}{125} = \frac{1}{5^3} = 5^{-3}
- \displaystyle \left(\frac{2}{3}\right)^{-1} = \frac{1}{\displaystyle\left(\frac{2}{3}\right)^1} = 1\cdot \frac{3}{2} = \frac{3}{2}
- \displaystyle \left(\frac{1}{3^2}\right)^{-3} = (3^{-2})^{-3} = 3^{(-2)\cdot(-3)}=3^6
- \displaystyle 0.01^5 = (10^{-2})^5 = 10^{-2 \cdot 5} = 10^{-10}
If the base of a power is \displaystyle -1 s then the expression will simplify to either \displaystyle -1 or \displaystyle +1 depending on the value of the exponent
The rule is that \displaystyle (-1)^n is equal to\displaystyle -1 if \displaystyle nis odd and equal to \displaystyle +1 if \displaystyle nis even .
Example 6
- \displaystyle (-1)^{56} = 1\quad as \displaystyle 56 is an even number
- \displaystyle \frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad because 11 is an odd number
- \displaystyle \frac{(-2)^{127}}{2^{130}} = \frac{(-1 \cdot 2)^{127}}{2^{130}} = \frac{(-1)^{127} \cdot 2^{127}}{2^{130}} = \frac{-1 \cdot 2^{127}}{2^{130}} \displaystyle \phantom{\frac{(-2)^{127}}{2^{130}}}{} = - 2^{127-130} = -2^{-3} = - \frac{1}{2^3} = - \frac{1}{8}
Changing the base
A point to observe is that when simplifying expressions try, if possible, to combine powers by choosing the same base. This often involves selecting 2, 3 or 5 as a base and, therefore, it is a good idea to learn to recognize the powers of these numbers, such as
But even
and so on.
Example 7
- Write \displaystyle \ 8^3 \cdot 4^{-2} \cdot 16\ s as a power with base 2
- \displaystyle 8^3 \cdot 4^{-2} \cdot 16 = (2^3)^3 \cdot (2^2)^{-2} \cdot 2^4 = 2^{3 \cdot 3} \cdot 2^{2 \cdot (-2)} \cdot 2^4
- \displaystyle \qquad\quad{}= 2^9 \cdot 2^{-4} \cdot 2^4 = 2^{9-4+4} =2^9
- Write \displaystyle \ \frac{27^2 \cdot (1/9)^{-2}}{81^2}\ as a power with base 3.
- \displaystyle \frac{27^2 \cdot (1/9)^{-2}}{81^2} = \frac{(3^3)^2 \cdot (1/3^2)^{-2}}{(3^4)^2} = \frac{(3^3)^2 \cdot (3^{-2})^{-2}}{(3^4)^2}
- \displaystyle \qquad\quad{} = \frac{3^{3 \cdot 2} \cdot 3^{(-2) \cdot (-2)}}{3^{4 \cdot 2}} = \frac{3^6\cdot 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2
- Write \displaystyle \frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4} in as simple a form as possible.
- \displaystyle \frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4} = \frac{3^4 \cdot (2^5)^2 \cdot \displaystyle\frac{2^2}{3^2}}{2^{4+1}+2^4} = \frac{3^4 \cdot 2^{5 \cdot 2} \cdot \displaystyle\frac{2^2}{3^2}}{2^4 \cdot 2^1 +2^4} = \frac{3^4 \cdot 2^{10} \cdot \displaystyle\frac{2^2}{3^2}}{2^4 \cdot(2^1+1)}
- \displaystyle \qquad\quad{} = \frac{ \displaystyle\frac{3^4 \cdot 2^{10} \cdot 2^2}{3^2}}{2^4 \cdot 3} = \frac{ 3^4 \cdot 2^{10} \cdot 2^2 }{3^2 \cdot 2^4 \cdot 3 } = 3^{4-2-1} \cdot 2^{10+2-4} = 3^1 \cdot 2^8= 3\cdot 2^8
Rational exponents
What happens if a number is raised to a rational exponent? Do the the definitions and the rules we have used above to do calculations still hold?
For instance, since Vorlage:Fristående formel so \displaystyle 2^{1/2} must be the same as \displaystyle \sqrt{2} because \displaystyle \sqrt2 is defined as the number which satisfies \displaystyle \sqrt2\cdot\sqrt2 = 2 .
Generally, we define
We must assume that t \displaystyle a\ge 0, ince no real number multiplied by itself can give a negative number.
We also see that, for example, Vorlage:Fristående formel
which means that math>\,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\,</math> which can be generalised to
By combining this definition with one of the previous laws of exponents \displaystyle ((a^m)^n=a^{m\cdot n}) means that, for all\displaystyle a\ge0 it holds that
Example 8
- \displaystyle 27^{1/3} = \sqrt[\scriptstyle 3]{27} = 3\quad eftersom \displaystyle 3 \cdot 3 \cdot 3 =27
- \displaystyle 1000^{-1/3} = \frac{1}{1000^{1/3}} = \frac{1}{(10^3)^{1/3}} = \frac{1}{10^{3 \cdot \frac{1}{3}}} = \frac{1}{10^1} = \frac{1}{10}
- \displaystyle \frac{1}{\sqrt{8}} = \frac{1}{8^{1/2}} = \frac{1}{(2^3)^{1/2}} = \frac{1}{2^{3/2}} = 2^{-3/2}
- \displaystyle \frac{1}{16^{-1/3}} = \frac{1}{(2^4)^{-1/3}} = \frac{1}{2^{-4/3}} = 2^{-(-4/3)}= 2^{4/3}
Comparison of powers
If we do not have access to calculators and wish to compare the size of powers, one can sometimes achieve this by comparing bases or exponents.
If the base of a power greater than \displaystyle 1 s then the power is larger the larger the exponent. On the other hand, if the base lies between \displaystyle 0 and \displaystyle 1 then the power decreases as the exponent grows.
Example 9
- \displaystyle \quad 3^{5/6} > 3^{3/4}\quad as the base \displaystyle 3 is greater than \displaystyle 1 and the first exponent \displaystyle 5/6 is greater than the second exponent \displaystyle 3/4.
- \displaystyle \quad 3^{-3/4} > 3^{-5/6}\quad as the base is greater than \displaystyle 1 and the exponents satisfy \displaystyle -3/4 > - 5/6.
- \displaystyle \quad 0{,}3^5 < 0{,}3^4 \quadas the base \displaystyle 0{,}3 is between \displaystyle 0 and \displaystyle 1 and \displaystyle 5 > 4.
If a power has a positive exponent, it will larger the larger the base is . The opposite applies if exponent is negative: that is the power decreases as the base gets larger.
Example 10
- \displaystyle \quad 5^{3/2} > 4^{3/2}\quad as the base \displaystyle 5 is larger than the base \displaystyle 4 and both powers have the same positive exponent \displaystyle 3/2.
- \displaystyle \quad 2^{-5/3} > 3^{-5/3}\quad as the bases satisfy \displaystyle 2<3 and the powers have a negative exponent \displaystyle -5/3.
Sometimes powers must be rewritten in order to determine the relative sizes. For example to compare \displaystyle 125^2 with \displaystyle 36^3one can rewrite them as Vorlage:Fristående formel
after which one can see that \displaystyle 36^3 > 125^2.
Example 11
Determine which of the following pairs of numbers is the greater
- \displaystyle 25^{1/3} och \displaystyle 5^{3/4} .
The base 25 can be written about in terms of the second base \displaystyle 5by putting\displaystyle 25= 5\cdot 5= 5^2. Therefore Vorlage:Fristående formel and then we see that Vorlage:Fristående formel since \displaystyle \frac{3}{4} > \frac{2}{3} and the base \displaystyle 5 is larger than \displaystyle 1. - \displaystyle (\sqrt{8}\,)^5 och \displaystyle 128.
Both \displaystyle 8 and \displaystyle 128 can be written as powers of \displaystyle 2 Vorlage:Fristående formel This means that Vorlage:Fristående formel and thus Vorlage:Fristående formel because \displaystyle \frac{15}{2} > \frac{14}{2} and the base \displaystyle 2 is greater than \displaystyle 1. - \displaystyle (8^2)^{1/5} och \displaystyle (\sqrt{27}\,)^{4/5}.
Since \displaystyle 8=2^3 and \displaystyle 27=3^3 a first step can be to simplify and write the numbers as powers of \displaystyle 2 and \displaystyle 3 respectively, Vorlage:Fristående formel Now we see that Vorlage:Fristående formel because \displaystyle 3>2 nd exponent\displaystyle \frac{6}{5} is positive. - \displaystyle 3^{1/3} och \displaystyle 2^{1/2}
We rewrite the exponents so they have a common denominator Vorlage:Fristående formel Then we have that Vorlage:Fristående formel and we see that Vorlage:Fristående formel because \displaystyle 9>8 and the exponent\displaystyle 1/6 is positive.
'Study advice
Basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that:
The number raised to the power 0, is always 1, if the number (the base) is not 0.
Reviews
For those of you who want to deepen your studies or need more detailed explanations consider the following references
Learn more about powers in the English Wikipedi
What is the greatest prime number? Read more at The Prime Page
Länktips