Lösung 2.3:2e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (08:28, 13. Mai 2011) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 8 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
Write the equation in normalized form by dividing both sides by
+
Wir schreiben die Gleichung auf Normalform, indem wir alle Terme durch 5 dividieren,
-
<math>5</math>,
+
 +
{{Abgesetzte Formel||<math>x^{2}+\frac{2}{5}x-\frac{3}{5}=0\,\textrm{.}</math>}}
-
<math>x^{2}+\frac{2}{5}x-\frac{3}{5}=0</math>
+
Wir führen die quadratische Ergänzung auf der linken Seite aus
 +
{{Abgesetzte Formel||<math>\begin{align}
 +
x^{2}+\frac{2}{5}x-\frac{3}{5}
 +
&= \Bigl(x+\frac{2/5}{2}\Bigr)^{2} - \Bigl(\frac{2/5}{2}\Bigr)^{2} - \frac{3}{5}\\[5pt]
 +
&= \Bigl(x+\frac{1}{5}\Bigr)^{2} - \Bigl(\frac{1}{5}\Bigr)^{2} - \frac{3}{5}\\[5pt]
 +
&= \Bigl(x+\frac{1}{5}\Bigr)^{2} - \frac{1}{25} - \frac{3\cdot 5}{25}\\[5pt]
 +
&= \Bigl(x+\frac{1}{5}\Bigr)^{2} - \frac{16}{25}\,\textrm{.}
 +
\end{align}</math>}}
-
Completing the square on the left-hand side,
+
Die Gleichung kann daher als
-
<math></math>
+
-
<math></math>
+
{{Abgesetzte Formel||<math>\left( x+\frac{1}{5} \right)^{2}=\frac{16}{25}\,\textrm{,}</math>}}
-
<math></math>
+
geschrieben werden und hat die Wurzeln
 +
:*<math>x+\tfrac{1}{5} = \sqrt{\tfrac{16}{25}} = \tfrac{4}{5} </math> nachdem <math>\bigl(\tfrac{4}{5}\bigr)^{2} = \tfrac{16}{25}\,,</math> und wir bekommen <math>x=-\tfrac{1}{5}+\tfrac{4}{5}=\tfrac{3}{5},</math>
 +
:*<math>x+\tfrac{1}{5} = -\sqrt{\tfrac{16}{25}} = -\tfrac{4}{5}\,,</math> und wir bekommen <math>x = -\tfrac{1}{5}-\tfrac{4}{5}=-1\,\textrm{.}</math>
-
<math>\begin{align}
+
Schließlich kontrollieren wir unsere Antwort, indem wir kontrollieren, ob <math>x=-1</math> und <math>x=3/5</math> die ursprüngliche Gleichung erfüllen
-
& x^{2}+\frac{2}{5}x-\frac{3}{5}=\left( x+\frac{\frac{2}{5}}{2} \right)^{2}-\left( \frac{\frac{2}{5}}{2} \right)^{2}-\frac{3}{5} \\
+
-
& =\left( x+\frac{1}{5} \right)^{2}-\left( \frac{1}{5} \right)^{2}-\frac{3}{5}=\left( x+\frac{1}{5} \right)^{2}-\frac{1}{25}-\frac{3\centerdot 5}{25}=\left( x+\frac{1}{5} \right)^{2}-\frac{16}{25} \\
+
-
\end{align}</math>
+
 +
:* <math>x = -1:\ \text{Linke Seite} = 5\cdot (-1)^{2} + 2\cdot (-1) - 3 = 5 - 2 - 3 = 0 = \text{Rechte Seite,}</math>
-
The equation is now rewritten as
+
:* <math>x = 3/5: \ \text{Linke Seite} = 5\cdot\bigl(\tfrac{3}{5}\bigr)^{2} + 2\cdot\bigl(\tfrac{3}{5}\bigr) - 3 = 5\cdot\tfrac{9}{25} + \tfrac{6}{5} - \tfrac{3\cdot 5}{5} = 0 = \text{Rechte Seite.}</math>
-
 
+
Alternativer Lösungsweg: [[2.3:2e_alt5|p-q_Formel]]
-
<math>\left( x+\frac{1}{5} \right)^{2}=\frac{16}{25}</math>
+
-
 
+
-
 
+
-
and taking the root gives the solutions
+
-
 
+
-
 
+
-
<math>x+\frac{1}{5}=\sqrt{\frac{16}{25}}=\frac{4}{5}</math>
+
-
because
+
-
<math>\left( \frac{4}{5}^{2} \right)=\frac{16}{25}</math>
+
-
which gives
+
-
<math>x=-\frac{1}{5}+\frac{4}{5}=\frac{3}{5},</math>
+
-
 
+
-
 
+
-
<math>x+\frac{1}{5}=-\sqrt{\frac{16}{25}}=-\frac{4}{5}</math>
+
-
which gives
+
-
<math>x=-\frac{1}{5}-\frac{4}{5}=-1,</math>
+
-
 
+
-
 
+
-
Finally, we check the answer by substituting
+
-
<math>x=-\text{1 }</math>
+
-
and
+
-
<math>x=\text{3}/\text{5 }</math>
+
-
into the equation:
+
-
 
+
-
 
+
-
<math>x=-\text{1 }</math>: LHS
+
-
<math>=5\centerdot \left( -1 \right)^{2}+2\centerdot \left( -1 \right)-3=5-2-3=0=</math>
+
-
RHS
+
-
 
+
-
<math>x=\text{3}/\text{5 }</math>: LHS
+
-
<math>=5\centerdot \left( \frac{3}{5} \right)^{2}+2\centerdot \left( \frac{3}{5} \right)-3=5\centerdot \frac{9}{25}+\frac{6}{5}-\frac{3\centerdot 5}{5}=\frac{9+6-15}{5}=0=</math>
+
-
RHS
+

Aktuelle Version

Wir schreiben die Gleichung auf Normalform, indem wir alle Terme durch 5 dividieren,

\displaystyle x^{2}+\frac{2}{5}x-\frac{3}{5}=0\,\textrm{.}

Wir führen die quadratische Ergänzung auf der linken Seite aus

\displaystyle \begin{align}

x^{2}+\frac{2}{5}x-\frac{3}{5} &= \Bigl(x+\frac{2/5}{2}\Bigr)^{2} - \Bigl(\frac{2/5}{2}\Bigr)^{2} - \frac{3}{5}\\[5pt] &= \Bigl(x+\frac{1}{5}\Bigr)^{2} - \Bigl(\frac{1}{5}\Bigr)^{2} - \frac{3}{5}\\[5pt] &= \Bigl(x+\frac{1}{5}\Bigr)^{2} - \frac{1}{25} - \frac{3\cdot 5}{25}\\[5pt] &= \Bigl(x+\frac{1}{5}\Bigr)^{2} - \frac{16}{25}\,\textrm{.} \end{align}

Die Gleichung kann daher als

\displaystyle \left( x+\frac{1}{5} \right)^{2}=\frac{16}{25}\,\textrm{,}

geschrieben werden und hat die Wurzeln

  • \displaystyle x+\tfrac{1}{5} = \sqrt{\tfrac{16}{25}} = \tfrac{4}{5} nachdem \displaystyle \bigl(\tfrac{4}{5}\bigr)^{2} = \tfrac{16}{25}\,, und wir bekommen \displaystyle x=-\tfrac{1}{5}+\tfrac{4}{5}=\tfrac{3}{5},
  • \displaystyle x+\tfrac{1}{5} = -\sqrt{\tfrac{16}{25}} = -\tfrac{4}{5}\,, und wir bekommen \displaystyle x = -\tfrac{1}{5}-\tfrac{4}{5}=-1\,\textrm{.}

Schließlich kontrollieren wir unsere Antwort, indem wir kontrollieren, ob \displaystyle x=-1 und \displaystyle x=3/5 die ursprüngliche Gleichung erfüllen

  • \displaystyle x = -1:\ \text{Linke Seite} = 5\cdot (-1)^{2} + 2\cdot (-1) - 3 = 5 - 2 - 3 = 0 = \text{Rechte Seite,}
  • \displaystyle x = 3/5: \ \text{Linke Seite} = 5\cdot\bigl(\tfrac{3}{5}\bigr)^{2} + 2\cdot\bigl(\tfrac{3}{5}\bigr) - 3 = 5\cdot\tfrac{9}{25} + \tfrac{6}{5} - \tfrac{3\cdot 5}{5} = 0 = \text{Rechte Seite.}

Alternativer Lösungsweg: p-q_Formel