1.2 Brüche

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (14:07, 21. Jan. 2011) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 64 dazwischen liegende Versionen mit ein.)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #797979" width="5px" |  
| style="border-bottom:1px solid #797979" width="5px" |  
-
{{Vald flik|[[1.2 Bråkräkning|Teori]]}}
+
{{Gewählter Tab|[[1.2 Brüche|Theorie]]}}
-
{{Ej vald flik|[[1.2 Övningar|Övningar]]}}
+
{{Nicht gewählter Tab|[[1.2 Übungen|Übungen]]}}
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
{{Info|
{{Info|
-
'''Contents:'''
+
'''Inhalt:'''
-
* Addition and subtraction of fractions
+
* Addition und Subtraktion von Brüchen
-
* Multiplication and division of fractions
+
* Multiplikation und Division von Brüchen
}}
}}
{{Info|
{{Info|
-
'''Learning outcomes:'''
+
'''Lernziele:'''
-
After this section, you should have learned to:
+
Nach diesem Abschnitt solltest Du ...
-
*Calculate expressions containing fractions, the four arithmetic operations and parentheses.
+
* ... Ausdrücke bestehend aus Brüchen, den vier Grundrechnungsarten und Klammern berechnen können.
-
*Cancellation as far as possible.
+
* ... Brüche so weit wie möglich kürzen können.
-
*Determining the lowest common denominator (LCD).
+
* ... den Hauptnenner von Brüchen bestimmen können.
}}
}}
-
== Fraction modification ==
+
Die Lernziele sind Dir aus der Schule noch bestens vertraut und Du weisst ganz genau, wie man die zugehörigen Rechnungen ausführt? Dann kannst Du auch gleich mit den <b>Prüfungen</b> beginnen (Du findest den Link in der Student Lounge).
-
A rational number can be written in many ways, depending on the denominator one chooses to use. For example, we have that
+
== A - Brüche kürzen und erweitern ==
-
{{Fristående formel||<math>0{,}25 = \frac{25}{100} = \frac{1}{4} = \frac{2}{8} = \frac{3}{12} = \frac{4}{16}\quad\textrm{etc.}</math>}}
+
Eine rationale Zahl kann in mehreren äquivalenten Formen dargestellt werden, je nach der Wahl des Zählers und Nenners. Zum Beispiel:
-
The value of a rational number is not changed by multiplying or dividing the numerator and denominator with the same number. The division operation is called cancellation.
+
{{Abgesetzte Formel||<math>0{,}25 = \frac{25}{100} = \frac{1}{4} = \frac{2}{8} = \frac{3}{12} = \frac{4}{16}\quad\textrm{etc.}</math>}}
 +
 
 +
Ein Bruch ändert also nicht seinen Wert, wenn man den Zähler und den Nenner jeweils mit der gleichen Zahl multipliziert oder durch die gleiche Zahl teilt. Diesen Vorgang nennt man erweitern bzw. kürzen.
<div class="exempel">
<div class="exempel">
-
''' Example 1'''
+
''' Beispiel 1'''
-
 
+
Multiplikation mit derselben Zahl:
-
Same number multiplication:
+
<ol type="a">
<ol type="a">
<li><math>\frac{2}{3} = \frac{2\cdot 5}{3\cdot 5} = \frac{10}{15}</math></li>
<li><math>\frac{2}{3} = \frac{2\cdot 5}{3\cdot 5} = \frac{10}{15}</math></li>
<li><math>\frac{5}{7} = \frac{5\cdot 4}{7\cdot 4} = \frac{20}{28}</math></li>
<li><math>\frac{5}{7} = \frac{5\cdot 4}{7\cdot 4} = \frac{20}{28}</math></li>
</ol>
</ol>
-
 
+
Division durch dieselbe Zahl:
-
Same number division (Cancellation):
+
<ol type="a" start="3">
<ol type="a" start="3">
Zeile 51: Zeile 51:
</div>
</div>
-
One should always specify a fraction in a form where cancellation has been performed as far as possible. This can be labourious when large numbers are involved, which is why, during an ongoing calculation one should try to keep all fractions maximally cancelled.
+
Ein Bruch sollte immer so weit wie möglich gekürzt werden. Dies kann bei großen Zahlen schwierig werden. Deshalb sollte man die Brüche so kurz wie möglich in den Rechnungen schreiben.
-
==Addition and subtraction of fractions ==
+
== B - Addition und Subtraktion von Brüchen ==
-
The addition and subtraction of fractions requires that the fractions have the same denominator. If this is not so, one must begin by multiplying the numerator and denominator of each fractions by a suitable number so that all the fractions then have common denominator.
+
Um Brüche addieren und subtrahieren zu können, müssen alle Brüche denselben Nenner haben. Wenn das nicht der Fall ist, muss man zuerst die Brüche mit einer geeigneten Zahl erweitern, sodass sie denselben Nenner bekommen.
<div class="exempel">
<div class="exempel">
-
''' Example 2'''
+
''' Beispiel 2'''
<ol type="a">
<ol type="a">
<li><math>\frac{3}{5}+\frac{2}{3}
<li><math>\frac{3}{5}+\frac{2}{3}
Zeile 72: Zeile 72:
</div>
</div>
-
The important point here is to obtain a common denominator, but we should try and find a common denominator which is as small as possible. The ideal always is to find the lowest common denominator (LCD). One can always obtain a common denominator by multiplying all the involved denominators with each other. However, this is not always necessary.
+
Das Wichtigste hier ist, einen gemeinsamen Nenner zu finden. Einen gemeinsamen Nenner findet man einfach, indem man alle Brüche mit den Nennern der anderen Brüche erweitert. Oft erhält man dadurch aber sehr große Zahlen, die das Weiterrechnen erschweren. Daher ist es ideal, den ''kleinstmöglichen'' gemeinsamen Nenner, den sogenannten Hauptnenner, zu finden.
 +
Der Hauptnenner zweier oder mehrerer Brüche ist das kleinste gemeinsame Vielfache (kgV) der Nenner der einzelnen Brüche.
<div class="exempel">
<div class="exempel">
-
'''Exempel 3'''
+
'''Beispiel 3'''
<ol type="a">
<ol type="a">
<li><math>\frac{7}{15}-\frac{1}{12}
<li><math>\frac{7}{15}-\frac{1}{12}
Zeile 106: Zeile 107:
</div>
</div>
-
One should be sufficiently profficient in doing mental arithmetic that one can quickly find the LCD if the denominators are of reasonable size. To generally determine the lowest common denominator requires investigating which prime numbers make up the denominator.
+
Man sollte die Bruchrechnung so gut beherrschen, dass man direkt den Hauptnenner von nicht all zu großen Brüchen findet. Eine allgemeine Methode um den Hauptnenner zu finden, besteht darin, dass man die Nenner in ihre Primfaktoren zerlegt.
 +
 
<div class="exempel">
<div class="exempel">
-
'''Exempel 4'''
+
'''Beispiel 4'''
<ol type="a">
<ol type="a">
-
<li>Simplify <math>\ \frac{1}{60} + \frac{1}{42}</math>.<br/><br/>
+
<li>Vereinfache <math>\ \frac{1}{60} + \frac{1}{42}</math>.<br/><br/>
-
 
+
Wir zerlegen die Nenner zuerst in ihre Primfaktoren.
-
Decompose 60 and 42 into their smallest integer factors . This way we can determine the minimum number that is divisible by 60 and 42. This is achieved by multiplying together the factors but avoid the inclusion of too many of the factors that the numbers have in common.
+
{{Abgesetzte Formel||<math>\eqalign{60 &= 2\cdot &2\cdot &3\cdot &5& \cr 42 &= &2\cdot &3\cdot &&7}</math>}}
-
{{Fristående formel||<math>\left.\eqalign{60 &= 2\cdot 2\cdot 3\cdot 5\cr 42 &= 2\cdot 3\cdot 7}\right\} \quad\Rightarrow\quad \text{LCD} = 2\cdot 2\cdot 3\cdot 5\cdot 7 = 420\,\mbox{.}</math>}}
+
Das kgV der beiden Nenner ist das Produkt aus allen Primfaktoren, die in einer der beiden Zerlegungen vorkommen. Gleiche Primfaktoren werden dabei so oft verwendet, wie in der Zerlegung, in der sie am häufigsten vorkommen:
-
We then can write
+
{{Abgesetzte Formel||<math>\text{kgV}(60,42) = 2\cdot 2\cdot 3\cdot 5\cdot 7 = 420\,\mbox{.}</math>}}
-
{{Fristående formel||<math>\frac{1}{60}+\frac{1}{42} = \frac{1\cdot 7}{60\cdot 7} + \frac{1\cdot 2\cdot 5}{42\cdot 2\cdot 5} = \frac{7}{420} + \frac{10}{420} =\frac{17}{420}\,\mbox{.}</math>}}
+
Anstatt nun jeden Bruch mit dem gesamten Nenner des anderen Bruches zu erweitern, erweitern wir die Brüche nur mit den Primfaktoren, die dem jeweiligen Nenner noch zum kgV fehlen und bringen sie so auf den Hauptnenner. Danach könne wir einfach addieren:
 +
{{Abgesetzte Formel||<math>\frac{1}{60}+\frac{1}{42} = \frac{1\cdot 7}{60\cdot 7} + \frac{1\cdot 2\cdot 5}{42\cdot 2\cdot 5} = \frac{7}{420} + \frac{10}{420} =\frac{17}{420}\,\mbox{.}</math>}}
</li>
</li>
-
<li> Simplify <math>\ \frac{2}{15}+\frac{1}{6}-\frac{5}{18}</math>.<br/><br/>
+
<li> Vereinfache <math>\ \frac{2}{15}+\frac{1}{6}-\frac{5}{18}</math>.<br/><br/>
-
 
+
Bestimmung des kgV der drei Nenner:
-
The lowest common denominator is chosen so that it contains just enough primes in order to be divisible by 15, 6 and 18
+
{{Abgesetzte Formel||<math>\eqalign{15 &= &3\cdot &&5\cr 6&=2\cdot &3\cr 18 &= 2\cdot &3\cdot &3} </math>}}
-
{{Fristående formel||<math>\left. \eqalign{15 &= 3\cdot 5\cr 6&=2\cdot 3\cr 18 &= 2\cdot 3\cdot 3} \right\} \quad\Rightarrow\quad \text{LCD} = 2\cdot 3\cdot 3\cdot5 = 90\,\mbox{.}</math>}}
+
haben das kgV
-
We then can write
+
{{Abgesetzte Formel||<math>
-
{{Fristående formel||<math> \frac{2}{15}+\frac{1}{6}-\frac{5}{18} = \frac{2\cdot 2\cdot 3}{15\cdot 2\cdot 3} + \frac{1\cdot 3\cdot 5}{6\cdot 3\cdot 5} - \frac{5\cdot 5}{18\cdot 5} = \frac{12}{90} + \frac{15}{90} - \frac{25}{90} = \frac{2}{90} = \frac{1}{45}\,\mbox{.}</math>}}
+
\text{kgV}(15, 6, 18) = 2\cdot 3\cdot 3\cdot5 = 90\,\mbox{.}</math>}}
 +
Also haben wir
 +
{{Abgesetzte Formel||<math> \frac{2}{15}+\frac{1}{6}-\frac{5}{18} = \frac{2\cdot 2\cdot 3}{15\cdot 2\cdot 3} + \frac{1\cdot 3\cdot 5}{6\cdot 3\cdot 5} - \frac{5\cdot 5}{18\cdot 5} = \frac{12}{90} + \frac{15}{90} - \frac{25}{90} = \frac{2}{90} = \frac{1}{45}\,\mbox{.}</math>}}
</li>
</li>
</ol>
</ol>
</div>
</div>
 +
== C - Multiplikation ==
-
== Multiplication ==
+
Wenn man einen Bruch mit einer ganzen Zahl multipliziert, wird nur der Zähler mit dieser Zahl multipliziert, während der Nenner unverändert bleibt. Es ist offensichtlich, dass zum Beispiel <math>\tfrac{1}{3}</math> mit 2 multipliziert <math>\tfrac{2}{3}</math> ergibt, also:
-
When a fraction is multiplied by an integer, only the numerator is multiplied by the integer . It is obvious that, for example, <math>\tfrac{1}{3}</math> multiplied by 2 gives <math>\tfrac{2}{3}</math>, that is. <math>\tfrac{1}{3}</math> multipliceras med 2 så blir resultatet <math>\tfrac{2}{3}</math>, dvs.
+
{{Abgesetzte Formel||<math>\frac{1}{3}\cdot 2 = \frac{1\cdot 2}{3} = \frac{2}{3}\,\mbox{.}</math>}}
-
{{Fristående formel||<math>\frac{1}{3}\cdot 2 = \frac{1\cdot 2}{3} = \frac{2}{3}\,\mbox{.}</math>}}
+
Wenn man Brüche miteinander multipliziert, multipliziert man die Zähler und die Nenner einzeln.
-
 
+
-
If two fraction are multiplied with each other, then the numerators are multiplied together and and the denominators are multiplied together.
+
<div class="exempel">
<div class="exempel">
-
''' Example 5'''
+
''' Beispiel 5'''
<ol type="a">
<ol type="a">
<li><math>8\cdot\frac{3}{7} = \frac{8\cdot 3}{7} = \frac{24}{7}</math></li>
<li><math>8\cdot\frac{3}{7} = \frac{8\cdot 3}{7} = \frac{24}{7}</math></li>
Zeile 145: Zeile 149:
</div>
</div>
-
Before doing a multiplication, one should always check whether it is possible to perform a cancellation. This is done by deleting any common factors in the numerator and denominator.
+
Bevor man Brüche multipliziert, sollte man kontrollieren, ob man den Bruch kürzen kann. Dies kontrolliert man, indem man die Brüche als einen gemeinsamen Bruch schreibt.
<div class="exempel">
<div class="exempel">
-
''' Example 6'''
+
''' Beispiel 6'''
-
 
+
Vergleiche die beiden Rechnungen:
-
Compare the calculations:
+
<ol type="a">
<ol type="a">
<li><math>\frac{3}{5}\cdot\frac{2}{3} = \frac{3\cdot 2}{5\cdot 3} = \frac{6}{15} = \frac{6/3}{15/3} = \frac{2}{5}</math></li>
<li><math>\frac{3}{5}\cdot\frac{2}{3} = \frac{3\cdot 2}{5\cdot 3} = \frac{6}{15} = \frac{6/3}{15/3} = \frac{2}{5}</math></li>
Zeile 157: Zeile 160:
</div>
</div>
-
In 6b one has cancelled the 3 at an earlier stage than in 6a.
+
In 6b hat man den Bruch mit einen Schritt vorher 3 gekürzt als in 6a, aber beide Rechnungen ergeben dasselbe.
<div class="exempel">
<div class="exempel">
-
'''Exempel 7'''
+
'''Beispiel 7'''
<ol type="a">
<ol type="a">
<li><math>\frac{7}{10}\cdot \frac{2}{7}
<li><math>\frac{7}{10}\cdot \frac{2}{7}
Zeile 178: Zeile 181:
-
== Division ==
+
== D - Division ==
-
If <math>\tfrac{1}{4}</math> is divided into 2 one gets the answer <math>\tfrac{1}{8}</math>. If <math>\tfrac{1}{2}</math> is divided into 5 one gets the result <math>\tfrac{1}{10}</math>. We have that
+
Wenn man <math>\tfrac{1}{4}</math> durch 2 teilt, bekommt man <math>\tfrac{1}{8}</math>. Wenn man <math>\tfrac{1}{2}</math> durch 5 teilt, bekommt man <math>\tfrac{1}{10}</math>. Wir haben also:
-
{{Fristående formel||<math>\frac{\displaystyle \frac{1}{4}}{2} = \frac{1}{4\cdot 2} = \frac{1}{8} \qquad \mbox{ and } \qquad \frac{\displaystyle \frac{1}{2}}{5} = \frac{1}{2\cdot 5} = \frac{1}{10}\,\mbox{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{\displaystyle \frac{1}{4}}{2} = \frac{1}{4\cdot 2} = \frac{1}{8} \qquad \mbox{ und } \qquad \frac{\displaystyle \frac{1}{2}}{5} = \frac{1}{2\cdot 5} = \frac{1}{10}\,\mbox{.}</math>}}
-
When a fraction divided by an integer, the denominator is multiplied by the integer.
+
Wenn ein Bruch durch eine ganze Zahl dividiert wird, wird also der Nenner mit dieser Zahl multipliziert.
<div class="exempel">
<div class="exempel">
-
'''Example 8'''
+
'''Beispiel 8'''
<ol type="a">
<ol type="a">
<li><math>\frac{3}{5}\Big/4 = \frac{3}{5\cdot 4} = \frac{3}{20}</math></li>
<li><math>\frac{3}{5}\Big/4 = \frac{3}{5\cdot 4} = \frac{3}{20}</math></li>
Zeile 194: Zeile 197:
</div>
</div>
-
When a number is divided by a fraction, the number is multiplied by the inverted ("up-side-down") fraction . For example, dividion by <math>\frac{1}{2}</math> is the same as multiplying by<math>\frac{2}{1}</math> that is 2.
+
Wenn man eine ganze Zahl durch einen Bruch dividiert, wird die Zahl mit dem Kehrbruch des Bruches multipliziert. Zum Beispiel ist die Division durch <math>\frac{1}{2}</math> dasselbe wie eine Multiplikation mit <math>\frac{2}{1}</math>, also 2.
<div class="exempel">
<div class="exempel">
-
'''Exempel 9'''
+
'''Beispiel 9'''
<ol type="a">
<ol type="a">
<li><math>\frac{3}{\displaystyle \frac{1}{2}}
<li><math>\frac{3}{\displaystyle \frac{1}{2}}
Zeile 218: Zeile 221:
</div>
</div>
-
How can division with a fraction turn into fraction multiplication? The explanation is that if a fraction is multiplied by its inverted fraction, the product is always 1, for example,
+
Wie kommt es, dass eine Division mit Brüchen eine Multiplikation wird? Die Erklärung ist, dass ein Bruch multipliziert mit seinem Kehrbruch, immer 1 ergibt. Zum Beispiel:
-
{{Fristående formel||<math>\frac{2}{3}\cdot\frac{3}{2} = \frac{\not{2}}{\not{3}}\cdot\frac{\not{3}}{\not{2}} = 1 \qquad \mbox{eller} \qquad \frac{9}{17}\cdot\frac{17}{9} = \frac{\not{9}}{\not{17}}\cdot\frac{\not{17}}{\not{9}} = 1\mbox{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{2}{3}\cdot\frac{3}{2} = \frac{\not{2}}{\not{3}}\cdot\frac{\not{3}}{\not{2}} = 1 \qquad \mbox{ und } \qquad \frac{9}{17}\cdot\frac{17}{9} = \frac{\not{9}}{\not{17}}\cdot\frac{\not{17}}{\not{9}} = 1\mbox{.}</math>}}
-
If in a division of fractions one multiplies the numerator and denominator with the inverse of the denominator then the resulting fraction will have denominator 1, and thus the result is the numerator multiplied by the inverse of the original denominator.
+
Bei einer Division von Brüchen erweitert man den ganzen Bruch mit dem Kehrbruch des Nennerbruches. Im Nenner bekommen wir daher nur einen 1:er.
<div class="exempel">
<div class="exempel">
-
''' Example 10'''
+
''' Beispiel 10'''
<math>\frac{\displaystyle \frac{2}{3}}{\displaystyle \frac{5}{7}}
<math>\frac{\displaystyle \frac{2}{3}}{\displaystyle \frac{5}{7}}
Zeile 235: Zeile 238:
-
== Fractions as a proportion of a whole ==
+
== E - Brüche als Teil eines Ganzen ==
-
Rational numbers are numbers that can be written as fractions, converted to decimal form, or marked on a real-number axis. In our everyday language they are also used to describe the proportion of something. Below are given some examples. Note how we use the word "of", which can lead to a multiplication or a division.
+
Rationale Zahlen können als Dezimalzahlen oder auch als Brüche dargestellt werden. Im Alltag verwendet man oft die rationalen Zahlen, um das Verhältnis von verschiedenen Mengen zu beschreiben. Eine Berechnung von einem Verhältnis kann entweder zu einer Multiplikation oder zu einer Division führen.
<div class="exempel">
<div class="exempel">
-
'''Exempel 11'''
+
'''Beispiel 11'''
<ol type="a">
<ol type="a">
-
<li>Olle invested SEK 20 and Stina SEK 50. .<br><br>
+
<li>Florian investiert 20 € und Julia 50 . Mit ihrer Investition erwirtschaften sie einen Gewinn. Wie soll der Gewinn gerecht aufgeteilt werden?<br><br>
-
Olles share is &nbsp;<math>\frac{20}{50 + 20} = \frac{20}{70} = \frac{2}{7}</math>&nbsp; and he must be given &nbsp;<math>\frac{2}{7}</math> of the profits. .</li><br><br>
+
Florians Anteil ist &nbsp;<math>\frac{20}{50 + 20} = \frac{20}{70} = \frac{2}{7}</math>&nbsp; und also sollte er &nbsp;<math>\frac{2}{7}</math> des Gewinns bekommen.</li><br><br>
-
<li> What proportion is EUR 45 of 100 EUR? <br><br>
+
<li> Was ist der Anteil von 45 € an 100 ? <br><br>
-
'''Answer:''' 45 EUR is &nbsp;<math>\frac{45}{100} = \frac{9}{20}</math>&nbsp;of 100 EUR. .</li><br><br>
+
'''Antwort:''' 45 € ist &nbsp;<math>\frac{45}{100} = \frac{9}{20}</math>&nbsp;von 100 . .</li><br><br>
-
<li> What proportion is <math>\frac{1}{3}</math>litres of <math>\frac{1}{2}</math> liter? <br><br>
+
<li> Was ist der Anteil von <math>\frac{1}{3}</math>Liter an <math>\frac{1}{2}</math> Liter? <br><br>
-
'''Answer:''' <math>\frac{1}{3}</math> litres is <math>\frac{\displaystyle \frac{1}{3}}{\displaystyle \frac{1}{2}} = \frac{1}{3}\cdot\frac{2}{1} = \frac{2}{3} </math>&nbsp; of &nbsp;<math>\frac{1}{2}</math> litres.</li><br><br>
+
'''Antwort:''' <math>\frac{1}{3}</math> Liter sind <math>\frac{\displaystyle \frac{1}{3}}{\displaystyle \frac{1}{2}} = \frac{1}{3}\cdot\frac{2}{1} = \frac{2}{3} </math>&nbsp; von &nbsp;<math>\frac{1}{2}</math> Liter.</li><br><br>
-
+
<li>Wie viel ist &nbsp;<math>\frac{5}{8} </math>&nbsp; von 1000?<br><br>
-
<li>How much is &nbsp;<math>\frac{5}{8} </math>&nbsp; of 1000?<br><br>
+
'''Antwort:''' <math>\frac{5}{8}\cdot 1000 = \frac{5000}{8} = 625</math></li><br><br>
-
'''Answer:''' <math>\frac{5}{8}\cdot 1000 = \frac{5000}{8} = 625</math></li><br><br>
+
<li> Wie viel ist &nbsp;<math>\frac{2}{3}</math>&nbsp; von &nbsp;<math>\frac{6}{7}</math> ?<br><br>
-
<li> How much is &nbsp;<math>\frac{2}{3}</math>&nbsp; of &nbsp;<math>\frac{6}{7}</math> ?<br><br>
+
'''Antwort:''' <math>\frac{2}{3}\cdot\frac{6}{7} = \frac{2}{\not{3}} \cdot \frac{2 \cdot \not{3}}{7} = \frac{2 \cdot 2}{7} = \frac{4}{7}</math></li>
-
 
+
-
'''Answer:''' <math>\frac{2}{3}\cdot\frac{6}{7} = \frac{2}{\not{3}} \cdot \frac{2 \cdot \not{3}}{7} = \frac{2 \cdot 2}{7} = \frac{4}{7}</math></li>
+
</ol>
</ol>
</div>
</div>
 +
== F - Gemischte Ausdrücke ==
-
== Mixed expressions ==
+
Wenn Brüche in größeren Ausdrücken vorkommen, ist es wichtig sich an die Operatorrangfolge zu erinnern. Wichtig ist auch, dass es um Zähler und Nenner in einem Bruch "unsichtbare Klammern" gibt. Also muss man den Zähler und Nenner zuerst berechnen, bevor man den Bruch kürzt.
-
 
+
-
When fractions appear in calculations one, of course, must follow the usual methods for arithmetic operations and their priority (multiplication / division before addition / subtraction). Remember also that the numerator and denominator in a division are calculated separately before the division is performed ( "invisible parentheses").
+
<div class="exempel">
<div class="exempel">
-
''' Example 12'''
+
''' Beispiel 12'''
<ol type="a">
<ol type="a">
<li><math>\frac{1}{\displaystyle \frac{2}{3}+\frac{3}{4}}
<li><math>\frac{1}{\displaystyle \frac{2}{3}+\frac{3}{4}}
Zeile 322: Zeile 322:
</div>
</div>
-
[[1.2 Övningar|Exercises]]
 
 +
Noch Fragen zu diesem Kapitel? Dann schau nach im Kursforum (Du findest den Link in der Student Lounge) oder frag nach per Skype bei ombTutor <skype style="call" action="call">ombTutor</skype> <skype style="chat" action="chat">ombTutor</skype>
-
<div class="inforuta" style="width: 580px">
+
Keine weiteren Fragen mehr? Dann mach weiter mit den [[1.2 Übungen|'''Übungen''']].
-
'''Study advice'''
+
-
'''Basic and final tests'''
 
-
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
+
<div class="inforuta" style="width: 580px">
 +
'''Tipps fürs Lernen'''
 +
'''Diagnostische Prüfung und Schlussprüfung'''
-
'''Keep in mind that: '''
+
Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest die links zu den Prüfungen in Deiner "Student Lounge".
-
Try always to write an expression in the simplest possible terms. What is the "simplest" depends usually on the context.
 
-
It is important that you really master calculations with fractions. You should be able to find a common denominator, multiply or divide numerators and denominators by sutable numbers etc. These principles are basic when you have to calculate rational expression that includes variables and you will need them when you have to deal with other mathematical expressions and operations.
+
'''Bedenke folgendes: '''
-
Rational expression that contain variables (x, y, ...) and including fractions are very common when studying functions, especially difference quotient, limits and derivatives.
+
Versuche Deine Berechnungen so einfach wie möglich zu halten. Was am einfachsten ist, ist verschieden von Fall zu Fall.
 +
Es ist wichtig, die Rechnungen mit Brüchen gut zu beherrschen. Du solltest Bruchrechnungen sowie Divisionen, Multiplikation und Brüche mit gemeinsamen Nennern schreiben und ohne Probleme ausführen können. Bruchrechnungen kommen häufig in rationalen Funktionen vor, aber auch in Grenzwerten und Differentialrechnungen, und sind daher sehr elementar in der Mathematik.
-
'''Reviews'''
 
-
For those of you who want to deepen your studies or need more detailed explanations consider the following references
+
'''Literaturhinweise'''
-
[http://en.wikipedia.org/wiki/Fraction_(mathematics)Learn more about the fractions and calculating with fractions in the English Wikipedia ]
+
Für die, die tiefer in die Materie einsteigen wollen, sind hier einige Links angeführt:
-
[http://www.fritext.se/matte/brak/brak.html calculating with fractions - Fri text ]
+
[http://de.wikipedia.org/wiki/Bruchrechnung Mehr zur Bruchrechnung in der Wikipedia ]
-
'''Länktips'''
+
'''Nützliche Websites'''
-
[http://nlvm.usu.edu/en/nav/frames_asid_105_g_2_t_1.html Experimenting interactively with fractions ]
+
[http://nlvm.usu.edu/en/nav/frames_asid_105_g_2_t_1.html Interaktives Programm zu Brüchen (engl.)]
-
[http://www.math.kth.se/~gunnarj/BIENNALEN/fall4.html Play the prime number canon]
 
-
[http://www.theducation.se/kurser/experiment/gyma/applets/ex13_brakaddition/Ex13Applet.html Here you can get a picture of what happens when you combine fractions]
 
</div>
</div>

Aktuelle Version

       Theorie          Übungen      

Inhalt:

  • Addition und Subtraktion von Brüchen
  • Multiplikation und Division von Brüchen

Lernziele:

Nach diesem Abschnitt solltest Du ...

  • ... Ausdrücke bestehend aus Brüchen, den vier Grundrechnungsarten und Klammern berechnen können.
  • ... Brüche so weit wie möglich kürzen können.
  • ... den Hauptnenner von Brüchen bestimmen können.


Die Lernziele sind Dir aus der Schule noch bestens vertraut und Du weisst ganz genau, wie man die zugehörigen Rechnungen ausführt? Dann kannst Du auch gleich mit den Prüfungen beginnen (Du findest den Link in der Student Lounge).

A - Brüche kürzen und erweitern

Eine rationale Zahl kann in mehreren äquivalenten Formen dargestellt werden, je nach der Wahl des Zählers und Nenners. Zum Beispiel:

\displaystyle 0{,}25 = \frac{25}{100} = \frac{1}{4} = \frac{2}{8} = \frac{3}{12} = \frac{4}{16}\quad\textrm{etc.}

Ein Bruch ändert also nicht seinen Wert, wenn man den Zähler und den Nenner jeweils mit der gleichen Zahl multipliziert oder durch die gleiche Zahl teilt. Diesen Vorgang nennt man erweitern bzw. kürzen.

Beispiel 1 Multiplikation mit derselben Zahl:

  1. \displaystyle \frac{2}{3} = \frac{2\cdot 5}{3\cdot 5} = \frac{10}{15}
  2. \displaystyle \frac{5}{7} = \frac{5\cdot 4}{7\cdot 4} = \frac{20}{28}

Division durch dieselbe Zahl:

  1. \displaystyle \frac{9}{12} = \frac{9/3}{12/3} = \frac{3}{4}
  2. \displaystyle \frac{72}{108} = \frac{72/2}{108/2} = \frac{36}{54} = \frac{36/6}{54/6} = \frac{6}{9} = \frac{6/3}{9/3} = \frac{2}{3}

Ein Bruch sollte immer so weit wie möglich gekürzt werden. Dies kann bei großen Zahlen schwierig werden. Deshalb sollte man die Brüche so kurz wie möglich in den Rechnungen schreiben.


B - Addition und Subtraktion von Brüchen

Um Brüche addieren und subtrahieren zu können, müssen alle Brüche denselben Nenner haben. Wenn das nicht der Fall ist, muss man zuerst die Brüche mit einer geeigneten Zahl erweitern, sodass sie denselben Nenner bekommen.

Beispiel 2

  1. \displaystyle \frac{3}{5}+\frac{2}{3} = \frac{3\cdot 3}{5\cdot 3} + \frac{2\cdot 5}{3\cdot 5} = \frac{9}{15} + \frac{10}{15} = \frac{9+10}{15} = \frac{19}{15}
  2. \displaystyle \frac{5}{6}-\frac{2}{9} = \frac{5\cdot 3}{6\cdot 3} - \frac{2\cdot 2}{9\cdot 2} = \frac{15}{18} - \frac{4}{18} = \frac{15-4}{18} = \frac{11}{18}

Das Wichtigste hier ist, einen gemeinsamen Nenner zu finden. Einen gemeinsamen Nenner findet man einfach, indem man alle Brüche mit den Nennern der anderen Brüche erweitert. Oft erhält man dadurch aber sehr große Zahlen, die das Weiterrechnen erschweren. Daher ist es ideal, den kleinstmöglichen gemeinsamen Nenner, den sogenannten Hauptnenner, zu finden.

Der Hauptnenner zweier oder mehrerer Brüche ist das kleinste gemeinsame Vielfache (kgV) der Nenner der einzelnen Brüche.

Beispiel 3

  1. \displaystyle \frac{7}{15}-\frac{1}{12} = \frac{7\cdot 12}{15\cdot 12} - \frac{1\cdot 15}{12\cdot 15}\vphantom{\Biggl(}
    \displaystyle \insteadof{\displaystyle\frac{7}{15}-\frac{1}{12}}{}{} = \frac{84}{180}-\frac{15}{180} = \frac{69}{180} = \frac{69/3}{180/3} = \frac{23}{60}
  2. \displaystyle \frac{7}{15}-\frac{1}{12} = \frac{7\cdot 4}{15\cdot 4}- \frac{1\cdot 5}{12\cdot 5} = \frac{28}{60}-\frac{5}{60} = \frac{23}{60}
  3. \displaystyle \frac{1}{8}+\frac{3}{4}-\frac{1}{6} = \frac{1\cdot 4\cdot 6}{8\cdot 4\cdot 6} + \frac{3\cdot 8\cdot 6}{4\cdot 8\cdot 6} - \frac{1\cdot 8\cdot 4}{6\cdot 8\cdot 4}\vphantom{\Biggl(}
    \displaystyle \insteadof{\frac{1}{8}+\frac{3}{4}-\frac{1}{6}}{}{} = \frac{24}{192} + \frac{144}{192} - \frac{32}{192} = \frac{136}{192} = \frac{136/8}{192/8} = \frac{17}{24}
  4. \displaystyle \frac{1}{8}+\frac{3}{4}-\frac{1}{6} = \frac{1\cdot 3}{8\cdot 3} + \frac{3\cdot 6}{4\cdot 6} - \frac{1\cdot 4}{6\cdot 4} = \frac{3}{24} + \frac{18}{24} - \frac{4}{24} = \frac{17}{24}

Man sollte die Bruchrechnung so gut beherrschen, dass man direkt den Hauptnenner von nicht all zu großen Brüchen findet. Eine allgemeine Methode um den Hauptnenner zu finden, besteht darin, dass man die Nenner in ihre Primfaktoren zerlegt.

Beispiel 4

  1. Vereinfache \displaystyle \ \frac{1}{60} + \frac{1}{42}.

    Wir zerlegen die Nenner zuerst in ihre Primfaktoren.
    \displaystyle \eqalign{60 &= 2\cdot &2\cdot &3\cdot &5& \cr 42 &= &2\cdot &3\cdot &&7}

    Das kgV der beiden Nenner ist das Produkt aus allen Primfaktoren, die in einer der beiden Zerlegungen vorkommen. Gleiche Primfaktoren werden dabei so oft verwendet, wie in der Zerlegung, in der sie am häufigsten vorkommen:

    \displaystyle \text{kgV}(60,42) = 2\cdot 2\cdot 3\cdot 5\cdot 7 = 420\,\mbox{.}

    Anstatt nun jeden Bruch mit dem gesamten Nenner des anderen Bruches zu erweitern, erweitern wir die Brüche nur mit den Primfaktoren, die dem jeweiligen Nenner noch zum kgV fehlen und bringen sie so auf den Hauptnenner. Danach könne wir einfach addieren:

    \displaystyle \frac{1}{60}+\frac{1}{42} = \frac{1\cdot 7}{60\cdot 7} + \frac{1\cdot 2\cdot 5}{42\cdot 2\cdot 5} = \frac{7}{420} + \frac{10}{420} =\frac{17}{420}\,\mbox{.}
  2. Vereinfache \displaystyle \ \frac{2}{15}+\frac{1}{6}-\frac{5}{18}.

    Bestimmung des kgV der drei Nenner:
    \displaystyle \eqalign{15 &= &3\cdot &&5\cr 6&=2\cdot &3\cr 18 &= 2\cdot &3\cdot &3}

    haben das kgV

    \displaystyle

    \text{kgV}(15, 6, 18) = 2\cdot 3\cdot 3\cdot5 = 90\,\mbox{.}

    Also haben wir

    \displaystyle \frac{2}{15}+\frac{1}{6}-\frac{5}{18} = \frac{2\cdot 2\cdot 3}{15\cdot 2\cdot 3} + \frac{1\cdot 3\cdot 5}{6\cdot 3\cdot 5} - \frac{5\cdot 5}{18\cdot 5} = \frac{12}{90} + \frac{15}{90} - \frac{25}{90} = \frac{2}{90} = \frac{1}{45}\,\mbox{.}

C - Multiplikation

Wenn man einen Bruch mit einer ganzen Zahl multipliziert, wird nur der Zähler mit dieser Zahl multipliziert, während der Nenner unverändert bleibt. Es ist offensichtlich, dass zum Beispiel \displaystyle \tfrac{1}{3} mit 2 multipliziert \displaystyle \tfrac{2}{3} ergibt, also:

\displaystyle \frac{1}{3}\cdot 2 = \frac{1\cdot 2}{3} = \frac{2}{3}\,\mbox{.}

Wenn man Brüche miteinander multipliziert, multipliziert man die Zähler und die Nenner einzeln.

Beispiel 5

  1. \displaystyle 8\cdot\frac{3}{7} = \frac{8\cdot 3}{7} = \frac{24}{7}
  2. \displaystyle \frac{2}{3}\cdot \frac{1}{5} = \frac{2\cdot 1}{3\cdot 5} = \frac{2}{15}

Bevor man Brüche multipliziert, sollte man kontrollieren, ob man den Bruch kürzen kann. Dies kontrolliert man, indem man die Brüche als einen gemeinsamen Bruch schreibt.

Beispiel 6 Vergleiche die beiden Rechnungen:

  1. \displaystyle \frac{3}{5}\cdot\frac{2}{3} = \frac{3\cdot 2}{5\cdot 3} = \frac{6}{15} = \frac{6/3}{15/3} = \frac{2}{5}
  2. \displaystyle \frac{3}{5}\cdot\frac{2}{3} = \frac{\not{3}\cdot 2}{5\cdot \not{3}} = \frac{2}{5}

In 6b hat man den Bruch mit einen Schritt vorher 3 gekürzt als in 6a, aber beide Rechnungen ergeben dasselbe.

Beispiel 7

  1. \displaystyle \frac{7}{10}\cdot \frac{2}{7} = \frac{\not{7}}{10}\cdot \frac{2}{\not{7}} = \frac{1}{10}\cdot \frac{2}{1} = \frac{1}{\not{2} \cdot 5}\cdot \frac{\not{2}}{1} = \frac{1}{5}\cdot \frac{1}{1} =\frac{1}{5}
  2. \displaystyle \frac{14}{15}\cdot \frac{20}{21} = \frac{2 \cdot 7}{3 \cdot 5}\cdot \frac{4 \cdot 5}{3 \cdot 7} = \frac{2 \cdot \not{7}}{3 \cdot 5}\cdot \frac{4 \cdot 5}{3 \cdot \not{7}} = \frac{2}{3 \cdot \not{5}}\cdot \frac{4 \cdot \not{5}}{3} = \frac{2}{3}\cdot\frac{4}{3} = \frac{2\cdot 4}{3\cdot 3} = \frac{8}{9}


D - Division

Wenn man \displaystyle \tfrac{1}{4} durch 2 teilt, bekommt man \displaystyle \tfrac{1}{8}. Wenn man \displaystyle \tfrac{1}{2} durch 5 teilt, bekommt man \displaystyle \tfrac{1}{10}. Wir haben also:

\displaystyle \frac{\displaystyle \frac{1}{4}}{2} = \frac{1}{4\cdot 2} = \frac{1}{8} \qquad \mbox{ und } \qquad \frac{\displaystyle \frac{1}{2}}{5} = \frac{1}{2\cdot 5} = \frac{1}{10}\,\mbox{.}

Wenn ein Bruch durch eine ganze Zahl dividiert wird, wird also der Nenner mit dieser Zahl multipliziert.

Beispiel 8

  1. \displaystyle \frac{3}{5}\Big/4 = \frac{3}{5\cdot 4} = \frac{3}{20}
  2. \displaystyle \frac{6}{7}\Big/3 = \frac{6}{7\cdot 3} = \frac{2\cdot\not{3}}{7\cdot \not{3}} = \frac{2}{7}

Wenn man eine ganze Zahl durch einen Bruch dividiert, wird die Zahl mit dem Kehrbruch des Bruches multipliziert. Zum Beispiel ist die Division durch \displaystyle \frac{1}{2} dasselbe wie eine Multiplikation mit \displaystyle \frac{2}{1}, also 2.

Beispiel 9

  1. \displaystyle \frac{3}{\displaystyle \frac{1}{2}} = 3\cdot \frac{2}{1} = \frac{3\cdot 2}{1} = 6
  2. \displaystyle \frac{5}{\displaystyle \frac{3}{7}} = 5\cdot\frac{7}{3} = \frac{5\cdot 7}{3} = \frac{35}{3}
  3. \displaystyle \frac{\displaystyle \frac{2}{3}}{\displaystyle \frac{5}{8}} = \frac{2}{3}\cdot \frac{8}{5} = \frac{2\cdot 8}{3\cdot 5} = \frac{16}{15}
  4. \displaystyle \frac{\displaystyle \frac{3}{4}}{\displaystyle \frac{9}{10}} = \frac{3}{4}\cdot \frac{10}{9} = \frac{\not{3}}{2\cdot\not{2}} \cdot\frac{\not{2} \cdot 5}{\not{3} \cdot 3} = \frac{5}{2\cdot 3} = \frac{5}{6}

Wie kommt es, dass eine Division mit Brüchen eine Multiplikation wird? Die Erklärung ist, dass ein Bruch multipliziert mit seinem Kehrbruch, immer 1 ergibt. Zum Beispiel:

\displaystyle \frac{2}{3}\cdot\frac{3}{2} = \frac{\not{2}}{\not{3}}\cdot\frac{\not{3}}{\not{2}} = 1 \qquad \mbox{ und } \qquad \frac{9}{17}\cdot\frac{17}{9} = \frac{\not{9}}{\not{17}}\cdot\frac{\not{17}}{\not{9}} = 1\mbox{.}

Bei einer Division von Brüchen erweitert man den ganzen Bruch mit dem Kehrbruch des Nennerbruches. Im Nenner bekommen wir daher nur einen 1:er.

Beispiel 10

\displaystyle \frac{\displaystyle \frac{2}{3}}{\displaystyle \frac{5}{7}} = \frac{\displaystyle \frac{2}{3}\cdot\displaystyle \frac{7}{5}}{\displaystyle \frac{5}{7}\cdot\displaystyle \frac{7}{5}} = \frac{\displaystyle \frac{2}{3}\cdot\displaystyle \frac{7}{5}}{1} = \frac{2}{3}\cdot\frac{7}{5}


E - Brüche als Teil eines Ganzen

Rationale Zahlen können als Dezimalzahlen oder auch als Brüche dargestellt werden. Im Alltag verwendet man oft die rationalen Zahlen, um das Verhältnis von verschiedenen Mengen zu beschreiben. Eine Berechnung von einem Verhältnis kann entweder zu einer Multiplikation oder zu einer Division führen.

Beispiel 11

  1. Florian investiert 20 € und Julia 50 €. Mit ihrer Investition erwirtschaften sie einen Gewinn. Wie soll der Gewinn gerecht aufgeteilt werden?

    Florians Anteil ist  \displaystyle \frac{20}{50 + 20} = \frac{20}{70} = \frac{2}{7}  und also sollte er  \displaystyle \frac{2}{7} des Gewinns bekommen.


  2. Was ist der Anteil von 45 € an 100 €?

    Antwort: 45 € ist  \displaystyle \frac{45}{100} = \frac{9}{20} von 100 €. .


  3. Was ist der Anteil von \displaystyle \frac{1}{3}Liter an \displaystyle \frac{1}{2} Liter?

    Antwort: \displaystyle \frac{1}{3} Liter sind \displaystyle \frac{\displaystyle \frac{1}{3}}{\displaystyle \frac{1}{2}} = \frac{1}{3}\cdot\frac{2}{1} = \frac{2}{3}   von  \displaystyle \frac{1}{2} Liter.


  4. Wie viel ist  \displaystyle \frac{5}{8}   von 1000?

    Antwort: \displaystyle \frac{5}{8}\cdot 1000 = \frac{5000}{8} = 625


  5. Wie viel ist  \displaystyle \frac{2}{3}  von  \displaystyle \frac{6}{7} ?

    Antwort: \displaystyle \frac{2}{3}\cdot\frac{6}{7} = \frac{2}{\not{3}} \cdot \frac{2 \cdot \not{3}}{7} = \frac{2 \cdot 2}{7} = \frac{4}{7}

F - Gemischte Ausdrücke

Wenn Brüche in größeren Ausdrücken vorkommen, ist es wichtig sich an die Operatorrangfolge zu erinnern. Wichtig ist auch, dass es um Zähler und Nenner in einem Bruch "unsichtbare Klammern" gibt. Also muss man den Zähler und Nenner zuerst berechnen, bevor man den Bruch kürzt.

Beispiel 12

  1. \displaystyle \frac{1}{\displaystyle \frac{2}{3}+\frac{3}{4}} = \frac{1}{\displaystyle \frac{2\cdot 4}{3\cdot 4} + \frac{3\cdot 3}{4\cdot 3}} = \frac{1}{\displaystyle \frac{8}{12} + \frac{9}{12}} = \frac{1}{\displaystyle \frac{17}{12}} = 1\cdot\frac{12}{17} = \frac{12}{17}


  2. \displaystyle \frac{\displaystyle \frac{4}{3} - \frac{1}{6}}{\displaystyle \frac{4}{3}+\frac{1}{6}} = \frac{\displaystyle \frac{4 \cdot 2}{3 \cdot 2} - \frac{1}{6}}{\displaystyle \frac{4 \cdot 2}{3 \cdot 2} + \frac{1}{6}} = \frac{\displaystyle \frac{8}{6} - \frac{1}{6}}{\displaystyle \frac{8}{6} + \frac{1}{6}} = \frac{\displaystyle \frac{7}{6}}{\displaystyle \frac{9}{6}} = \frac{7}{\not{6}}\cdot\frac{\not{6}}{9} = \frac{7}{9}


  3. \displaystyle \frac{3-\displaystyle \frac{3}{5}}{\displaystyle \frac{2}{3}-2} = \frac{\displaystyle \frac{3 \cdot 5}{5}- \frac{3}{5}}{\displaystyle \frac{2}{3} - \frac{2 \cdot 3}{3}} = \frac{\displaystyle \frac{15}{5} - \frac{3}{5}}{\displaystyle \frac{2}{3} - \frac{6}{3}} = \frac{\displaystyle \frac{12}{5}}{-\displaystyle \frac{4}{3}} = \frac{12}{5}\cdot\left(-\frac{3}{4}\right) = -\frac{3\cdot \not{4} }{5} \cdot \frac{3}{\not{4}} = -\frac{3\cdot 3}{5} = -\frac{9}{5}


  4. \displaystyle \frac{\displaystyle\frac{1}{\frac{1}{2}+\frac{1}{3}}-\frac{3}{5} \cdot\frac{1}{3}}{\displaystyle\frac{2}{3}\big/\frac{1}{5} -\frac{\frac{1}{4}-\frac{1}{3}}{2}} = \frac{\displaystyle\frac{1}{\frac{3}{6}+\frac{2}{6}} -\frac{3\cdot1}{5\cdot3}}{\displaystyle\frac{2}{3}\cdot\frac{5}{1} -\frac{\frac{3}{12}-\frac{4}{12}}{2}} = \frac{\displaystyle \frac{1}{\displaystyle \frac{5}{6}} - \frac{1}{5}}{\displaystyle \frac{10}{3} - \frac{-\displaystyle \frac{1}{12}}{2}} \displaystyle \qquad\quad{}= \frac{\displaystyle \frac{6}{5} - \frac{1}{5}}{\displaystyle \frac{10}{3} + \frac{1}{24}} = \frac{1}{\displaystyle \frac{80}{24}+\frac{1}{24}} = \frac{1}{\displaystyle \frac{81}{24}} = \frac{24}{81} = \frac{8}{27}


Noch Fragen zu diesem Kapitel? Dann schau nach im Kursforum (Du findest den Link in der Student Lounge) oder frag nach per Skype bei ombTutor My status My status

Keine weiteren Fragen mehr? Dann mach weiter mit den Übungen.


Tipps fürs Lernen

Diagnostische Prüfung und Schlussprüfung

Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest die links zu den Prüfungen in Deiner "Student Lounge".


Bedenke folgendes:

Versuche Deine Berechnungen so einfach wie möglich zu halten. Was am einfachsten ist, ist verschieden von Fall zu Fall.

Es ist wichtig, die Rechnungen mit Brüchen gut zu beherrschen. Du solltest Bruchrechnungen sowie Divisionen, Multiplikation und Brüche mit gemeinsamen Nennern schreiben und ohne Probleme ausführen können. Bruchrechnungen kommen häufig in rationalen Funktionen vor, aber auch in Grenzwerten und Differentialrechnungen, und sind daher sehr elementar in der Mathematik.


Literaturhinweise

Für die, die tiefer in die Materie einsteigen wollen, sind hier einige Links angeführt:

Mehr zur Bruchrechnung in der Wikipedia


Nützliche Websites

Interaktives Programm zu Brüchen (engl.)