1.3 Potenzen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Ny sida: __NOTOC__ {{Info| '''Innehåll:''' * Positiv heltalsexponent * Negativ heltalsexponent * Rationell exponent * Potenslagar }} {{Info| '''Lärandemål:''' Efter detta avsnitt ska du ha lär...)
Aktuelle Version (14:22, 11. Sep. 2010) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 71 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
__NOTOC__
__NOTOC__
 +
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 +
| style="border-bottom:1px solid #797979" width="5px" |  
 +
{{Gewählter Tab|[[1.3 Potenzen|Theorie]]}}
 +
{{Nicht gewählter Tab|[[1.3 Übungen|Übungen]]}}
 +
| style="border-bottom:1px solid #797979" width="100%"|  
 +
|}
 +
{{Info|
{{Info|
-
'''Innehåll:'''
+
'''Inhalt: '''
-
* Positiv heltalsexponent
+
* Positive ganze Exponenten
-
* Negativ heltalsexponent
+
* Negative ganze Exponenten
-
* Rationell exponent
+
* Rationale Exponenten
-
* Potenslagar
+
* Die Rechenregeln für Exponenten
}}
}}
{{Info|
{{Info|
-
'''Lärandemål:'''
+
'''Lernziele:'''
-
Efter detta avsnitt ska du ha lärt dig att:
+
Nach diesem Abschnitt sollst Du ...
-
*Känna till begreppen bas och exponent.
+
* ... die Begriffe Basis und Exponent verstehen.
-
*Beräkna uttryck med heltalsexponent.
+
* ... Potenzen mit ganzen Exponenten berechnen können.
-
*Hantera potenslagarna i förenkling av potensuttryck.
+
* ... die Rechenregeln für Exponenten beherrschen.
-
*Veta när potenslagarna är giltiga (positiv bas).
+
* ... wissen, wann die Rechenregeln für Potenzen gültig sind (bei positiven Basen).
-
*Avgöra vilket av två potensuttryck som är störst baserat på jämförelse av bas/exponent.
+
* ... Potenzen der Größe nach vergleichen können (mit Hilfe der Größe des Exponenten/der Basis).
}}
}}
-
== Heltalspotenser ==
 
-
Vi använder multiplikationssymbolen som ett kortare skrivsätt
+
Die Lernziele sind Dir aus der Schule noch bestens vertraut und Du weisst ganz genau, wie man die zugehörigen Rechnungen ausführt? Dann kannst Du auch gleich mit den <b>Prüfungen</b> beginnen (Du findest den Link in der Student Lounge).
-
för upprepad addition av samma tal, t.ex.
+
 
 +
 
 +
== A - Ganze Exponenten ==
 +
 
 +
Die Multiplikation ist eine Kurzschreibweise das wiederholte Addieren, zum Beispiel,
-
{{Fristående formel||<math>4 + 4 + 4 + 4 + 4 = 4 \cdot 5\mbox{.}</math>}}
+
{{Abgesetzte Formel||<math>4 + 4 + 4 + 4 + 4 = 4 \cdot 5\mbox{.}</math>}}
-
+
-
På ett liknande sätt används potenser som ett kortare skrivsätt för upprepad multiplikation av samma tal:
+
Analog definiert man eine Potenz als eine wiederholte Multiplikation mit derselben Zahl:
-
{{Fristående formel||<math> 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5\mbox{.}</math>}}
+
{{Abgesetzte Formel||<math> 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5\mbox{.}</math>}}
-
Siffran 4 kallas för potensens ''bas'' och siffran 5 dess ''exponent''.
+
Die Zahl 4 wird als Basis bezeichnet, und die 5 wird als Exponent bezeichnet.
<div class="exempel">
<div class="exempel">
-
'''Exempel 1'''
+
'''Beispiel 1 '''
<ol type="a">
<ol type="a">
Zeile 44: Zeile 54:
= 0{,}1 \cdot 0{,}1 \cdot 0{,}1 = 0{,}001</math></li>
= 0{,}1 \cdot 0{,}1 \cdot 0{,}1 = 0{,}001</math></li>
<li><math>(-2)^4
<li><math>(-2)^4
-
= (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16</math>, men <math> -2^4
+
= (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16</math>, aber <math> -2^4
= -(2^4) = - (2 \cdot 2 \cdot 2 \cdot 2) = -16</math></li>
= -(2^4) = - (2 \cdot 2 \cdot 2 \cdot 2) = -16</math></li>
-
<li><math> 2\cdot 3^2 = 2 \cdot 3 \cdot 3 = 18</math>, men <math>
+
<li><math> 2\cdot 3^2 = 2 \cdot 3 \cdot 3 = 18</math>, aber <math>
(2\cdot3)^2 = 6^2 = 36</math></li>
(2\cdot3)^2 = 6^2 = 36</math></li>
</ol>
</ol>
Zeile 52: Zeile 62:
<div class="exempel">
<div class="exempel">
-
'''Exempel 2'''
+
'''Beispiel 2'''
<ol type="a">
<ol type="a">
Zeile 69: Zeile 79:
</div>
</div>
-
Det sista exemplet kan generaliseras till två användbara räkneregler för potenser:
+
Das letzte Beispiel kann durch zwei sehr nützliche Rechenregeln verallgemeinert werden:
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>\left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{och}\quad (ab)^m = a^m b^m</math>}}
+
{{Abgesetzte Formel||<math>\left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{und}\quad (ab)^m = a^m b^m\,\mbox{.}</math>}}
 +
für <math> a,b \in \Bbb{R} \setminus \{0\} </math> und <math> m \in \, \Bbb{N}</math>.
</div>
</div>
 +
== B - Rechenregeln für Potenzen ==
-
== Potenslagar ==
+
Weiter können noch einige Rechenregeln für Potenzen hergeleitet werden. Zum Beispiel sieht man, dass
-
Med definitionen av potens följer ytterligare några räkneregler som förenklar beräkningar med potenser inblandade. Man ser t.ex. att
+
{{Abgesetzte Formel||<math>2^3 \cdot 2^5 = \underbrace{\,2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm Faktoren }} \cdot \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 5\ {\rm Faktoren }} = \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ (3 + 5)\ {\rm Faktoren}} = 2^{3+5} = 2^8</math>}}
-
{{Fristående formel||<math>2^3 \cdot 2^5 = \underbrace{\,2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm st }} \cdot \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 5\ {\rm st }} = \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ (3 + 5)\ {\rm st}} = 2^{3+5} = 2^8</math>}}
+
Was durch folgende Regel für <math> a \in \Bbb{R} </math>und <math> m,n \in \Bbb{N}</math> verallgemeinert werden kann
-
vilket generellt kan skrivas
 
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>a^m \cdot a^n = a^{m+n}\mbox{.}</math>}}
+
{{Abgesetzte Formel||<math>a^m \cdot a^n = a^{m+n}\mbox{.}</math>}}
</div>
</div>
-
Vid division av potenser kan också beräkningarna förenklas om potenserna har samma bas
+
Bei der Division mit Potenzen mit derselben Basis gilt folgendes
-
{{Fristående formel||<math>\frac{2^7}{2^3}=\displaystyle\frac{ 2\cdot 2\cdot 2\cdot 2\cdot \not{2}\cdot \not{2}\cdot \not{2} }{ \not{2}\cdot \not{2}\cdot \not{2}} = 2^{7-3}=2^4\mbox{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{2^7}{2^3}=\displaystyle\frac{ 2\cdot 2\cdot 2\cdot 2\cdot \not{2}\cdot \not{2}\cdot \not{2} }{ \not{2}\cdot \not{2}\cdot \not{2}} = 2^{7-3}=2^4\mbox{.}</math>}}
 +
 
 +
Was durch folgende Regel für <math> a \in \Bbb{R}</math> und <math> m,n \in \Bbb{N}</math> verallgemeinert werden kann
-
Den allmänna regeln blir
 
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>\displaystyle\frac{a^m}{a^n}= a^{m-n}\mbox{.}</math>}}
+
{{Abgesetzte Formel||<math>\displaystyle\frac{a^m}{a^n}= a^{m-n}\mbox{.}</math>}}
</div>
</div>
-
När man råkar ut för en potens av en potens finns ytterligare
+
Wenn die Basis selbst ein Exponent ist, gibt es eine wichtige Rechenregel. Zum Beispiel ist
-
en användbar räkneregel. Vi ser att
+
 
 +
{{Abgesetzte Formel||<math> (5^2)^3 = 5^2 \cdot 5^2 \cdot 5^2 = \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm Faktoren}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm Faktoren}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm Faktoren}} = \underbrace{\,5\cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm mal}\ 2\ {\rm Faktoren}} = 5^{2 \cdot 3} = 5^6\mbox{}</math>}}
-
{{Fristående formel||<math> (5^2)^3 = 5^2 \cdot 5^2 \cdot 5^2 = \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm st}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm st}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm st}} = \underbrace{\,5\cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm gånger}\ 2\ {\rm st}} = 5^{2 \cdot 3} = 5^6\mbox{.}</math>}}
+
und
-
och
+
{{Abgesetzte Formel||<math> (5^3)^2 = 5^3\cdot5^3= \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm Faktoren}} \cdot \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm Faktoren}} = \underbrace{\,5\cdot 5 \cdot 5\,\cdot\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm mal}\ 3\ {\rm Faktoren}}=5^{3\cdot2}=5^6\mbox{.}</math>}}
-
{{Fristående formel||<math> (5^3)^2 = 5^3\cdot5^3= \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm st}} \cdot \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm st}} = \underbrace{\,5\cdot 5 \cdot 5\,\cdot\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm gånger}\ 3\ {\rm st}}=5^{2\cdot3}=5^6\mbox{.}</math>}}
 
 +
Dies kann durch folgende Rechenregel für <math> a \in \Bbb{R} </math> und <math> m,n \in \Bbb{N} </math> verallgemeinert werden
-
Allmänt kan detta skrivas
 
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>(a^m)^n = a^{m \cdot n}\mbox{.} </math>}}
+
{{Abgesetzte Formel||<math>(a^m)^n = a^{m \cdot n}\mbox{.} </math>}}
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 3'''
+
''' Beispiel 3'''
<ol type="a">
<ol type="a">
Zeile 126: Zeile 138:
<div class="exempel">
<div class="exempel">
-
'''Exempel 4'''
+
'''Beispiel 4'''
<ol type="a">
<ol type="a">
Zeile 137: Zeile 149:
-
Om ett bråk har samma potensuttryck i både täljare och nämnare så inträffar följande:
+
Wenn ein Bruch denselben Zähler und Nenner hat, geschieht folgendes:
-
{{Fristående formel||<math>\frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{samtidigt som}\quad \frac{5^3}{5^3} = \frac{ 5 \cdot 5 \cdot 5 }{ 5 \cdot 5 \cdot 5 } = \frac{125}{125} = 1\mbox{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{sowie}\quad \frac{5^3}{5^3} = \frac{ 5 \cdot 5 \cdot 5 }{ 5 \cdot 5 \cdot 5 } = \frac{125}{125} = 1\mbox{.}</math>}}
-
För att räknereglerna för potenser ska stämma gör man alltså den naturliga definitionen att för alla ''a'' som inte är 0 gäller att
+
Damit die Rechenregeln für Potenzen gültig sein sollen, definiert man, dass für alle <math>a \ne 0</math>
 +
 
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math> a^0 = 1\mbox{.} </math>}}
+
{{Abgesetzte Formel||<math> a^0 = 1\mbox{.} </math>}}
</div>
</div>
-
Vi kan också råka ut för att exponenten i nämnaren är större än den i täljaren. Vi får t.ex.
+
Es kann auch vorkommen, dass der Exponent im Nenner größer ist als der Exponent im Zähler. Zum Beispiel:
-
{{Fristående formel||<math>\frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{och}\quad \frac{3^4}{3^6} = \frac{\not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} }{ \not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} \cdot 3 \cdot 3} = \frac{1}{3 \cdot 3} = \frac{1}{3^2}\mbox{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{und}\quad \frac{3^4}{3^6} = \frac{\not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} }{ \not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} \cdot 3 \cdot 3} = \frac{1}{3 \cdot 3} = \frac{1}{3^2}\mbox{.}</math>}}
-
Vi ser här att enligt våra räkneregler måste den negativa exponenten betyda att
+
Dies muss bedeuten dass
-
{{Fristående formel||<math>3^{-2} = \frac{1}{3^2}\mbox{.}</math>}}
+
-
Den allmänna definitionen av negativa exponenter är att, för alla tal ''a'' som inte är 0 gäller att
+
{{Abgesetzte Formel||<math>3^{-2} = \frac{1}{3^2}\mbox{.}</math>}}
 +
Die allgemeine Definition von negativen Exponenten lautet für alle <math>a \ne 0</math>
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>a^{-n} = \frac{1}{a^n}\mbox{.}</math>}}
+
{{Abgesetzte Formel||<math>a^{-n} = \frac{1}{a^n}\mbox{.}</math>}}
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 5'''
+
''' Beispiel 5'''
<ol type="a">
<ol type="a">
Zeile 177: Zeile 190:
<li><math>\left(\frac{1}{3^2}\right)^{-3}
<li><math>\left(\frac{1}{3^2}\right)^{-3}
= (3^{-2})^{-3} = 3^{(-2)\cdot(-3)}=3^6</math></li>
= (3^{-2})^{-3} = 3^{(-2)\cdot(-3)}=3^6</math></li>
-
<li><math>0.01^5 = (10^{-2})^5 = 10^{-2 \cdot 5} = 10^{-10}</math></li>
+
<li><math>0,01^5 = (10^{-2})^5 = 10^{-2 \cdot 5} = 10^{-10}</math></li>
</ol>
</ol>
</div>
</div>
-
Om basen i ett potensuttryck är <math>-1</math> så blir uttrycket alternerande <math>-1</math> eller <math>+1</math> beroende på exponentens värde
+
Wenn die Basis einer Potenz <math>-1</math> ist, ist der Ausdruck entweder <math>-1</math> oder <math>+1</math> je nach Exponent.
-
{{Fristående formel||<math>\eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = 1\cr \quad\hbox{o.s.v.}}</math>}}
+
{{Abgesetzte Formel||<math>\eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{etc.}}</math>}}
-
Regeln är att <math>(-1)^n</math> är lika med <math>-1</math> om <math>n</math> är udda och lika med <math>+1</math> om <math>n</math> är jämn.
+
Die allgemeine Rechenregel ist, dass <math>(-1)^n </math> gleich <math>-1</math> ist, wenn <math>n</math> ungerade ist, und <math>+1</math>, wenn <math>n</math> gerade ist.
<div class="exempel">
<div class="exempel">
-
'''Exempel 6'''
+
''' Beispiel 6'''
<ol type="a">
<ol type="a">
-
<li><math>(-1)^{56} = 1\quad</math> eftersom <math>56</math> är ett jämnt tal</li>
+
<li><math>(-1)^{56} = 1\quad</math> weil <math>56</math> gerade ist </li>
-
<li><math>\frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad</math> eftersom 11 är ett udda tal</li>
+
<li><math>\frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad</math> weil 11 ungerade ist </li>
<li><math>\frac{(-2)^{127}}{2^{130}} = \frac{(-1 \cdot 2)^{127}}{2^{130}}
<li><math>\frac{(-2)^{127}}{2^{130}} = \frac{(-1 \cdot 2)^{127}}{2^{130}}
= \frac{(-1)^{127} \cdot 2^{127}}{2^{130}}
= \frac{(-1)^{127} \cdot 2^{127}}{2^{130}}
-
= \frac{-1 \cdot 2^{127}}{2^{130}}</math>
+
= \frac{-1 \cdot 2^{127}}{2^{130}}
-
<math>\phantom{\frac{(-2)^{127}}{2^{130}}}{} = - 2^{127-130} = -2^{-3}
+
= - 2^{127-130} = -2^{-3}
= - \frac{1}{2^3} = - \frac{1}{8}</math></li>
= - \frac{1}{2^3} = - \frac{1}{8}</math></li>
</ol>
</ol>
</div>
</div>
 +
== C - Basis wechseln ==
-
== Byte av bas ==
+
Beim Vereinfachen von Ausdrücken, geht es oft darum, Zahlen als Potenzen mit derselben Basis zu schreiben. Häufige Basen sind 2, 3, 4 und 5, und daher sollte man Potenzen von diesen Basen zu erkennen lernen. Zum Beispiel:
-
Man bör vara uppmärksam på att vid förenkling av uttryck om möjligt försöka skriva ihop potenser genom att välja samma bas. Det handlar ofta om att välja 2, 3 eller 5 som bas och därför bör man lära sig att känna igen potenser av dessa tal, exempelvis
+
{{Abgesetzte Formel||<math>4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots</math>}}
-
{{Fristående formel||<math>4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots</math>}}
+
{{Abgesetzte Formel||<math>9=3^2,\;\; 27=3^3,\;\; 81=3^4,\;\; 243=3^5,\;\ldots</math>}}
-
{{Fristående formel||<math>9=3^2,\;\; 27=3^3,\;\; 81=3^4,\;\; 243=3^5,\;\ldots</math>}}
+
{{Abgesetzte Formel||<math>25=5^2,\;\; 125=5^3,\;\; 625=5^4,\;\ldots</math>}}
-
{{Fristående formel||<math>25=5^2,\;\; 125=5^3,\;\; 625=5^4,\;\ldots</math>}}
+
Und auch
-
Men även
+
{{Abgesetzte Formel||<math>\frac{1}{4}=\frac{1}{2^2} = 2^{-2},\;\; \frac{1}{8}=\frac{1}{2^3}=2^{-3},\;\; \frac{1}{16}=\frac{1}{2^4}=2^{-4},\;\ldots</math>}}
-
{{Fristående formel||<math>\frac{1}{4}=\frac{1}{2^2} = 2^{-2},\;\; \frac{1}{8}=\frac{1}{2^3}=2^{-3},\;\; \frac{1}{16}=\frac{1}{2^4}=2^{-4},\;\ldots</math>}}
+
{{Abgesetzte Formel||<math>\frac{1}{9}=\frac{1}{3^2}=3^{-2},\;\; \frac{1}{27}=\frac{1}{3^3}=3^{-3},\;\ldots</math>}}
-
{{Fristående formel||<math>\frac{1}{9}=\frac{1}{3^2}=3^{-2},\;\; \frac{1}{27}=\frac{1}{3^3}=3^{-3},\;\ldots</math>}}
+
{{Abgesetzte Formel||<math>\frac{1}{25}=\frac{1}{5^2}=5^{-2},\;\; \frac{1}{125}=\frac{1}{5^3}=5^{-3},\;\ldots</math>}}
-
{{Fristående formel||<math>\frac{1}{25}=\frac{1}{5^2}=5^{-2},\;\; \frac{1}{125}=\frac{1}{5^3}=5^{-3},\;\ldots</math>}}
+
Usw.
-
 
+
-
osv.
+
<div class="exempel">
<div class="exempel">
-
'''Exempel 7'''
+
''' Beispiel 7'''
<ol type="a">
<ol type="a">
-
<li>Skriv <math>\ 8^3 \cdot 4^{-2} \cdot 16\ </math> som en potens med basen 2.
+
<li> Schreibe <math>\ 8^3 \cdot 4^{-2} \cdot 16\ </math> als eine Potenz mit der Basis 2.
<br/>
<br/>
<br/>
<br/>
Zeile 233: Zeile 245:
:<math>\qquad\quad{}= 2^9 \cdot 2^{-4} \cdot 2^4 = 2^{9-4+4} =2^9</math></li>
:<math>\qquad\quad{}= 2^9 \cdot 2^{-4} \cdot 2^4 = 2^{9-4+4} =2^9</math></li>
-
<li>Skriv <math>\ \frac{27^2 \cdot (1/9)^{-2}}{81^2}\ </math> som en potens av basen 3.
+
<li> Schreibe <math>\ \frac{27^2 \cdot (1/9)^{-2}}{81^2}\ </math> als eine Potenz mit der Basis 3.
<br/>
<br/>
<br/>
<br/>
Zeile 239: Zeile 251:
:<math>\qquad\quad{} = \frac{3^{3 \cdot 2} \cdot 3^{(-2) \cdot (-2)}}{3^{4 \cdot 2}} = \frac{3^6\cdot 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2</math></li>
:<math>\qquad\quad{} = \frac{3^{3 \cdot 2} \cdot 3^{(-2) \cdot (-2)}}{3^{4 \cdot 2}} = \frac{3^6\cdot 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2</math></li>
-
<li>Skriv <math>\frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4}</math> så enkelt som möjligt.
+
<li> Vereinfache <math>\frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4}</math> so weit wie möglich.
<br/>
<br/>
<br/>
<br/>
Zeile 248: Zeile 260:
-
== Rationell exponent ==
+
== D - Rationale Exponenten ==
-
Vad händer om ett tal höjs upp till en rationell exponent? Gäller fortfarande de definitioner och räkneregler vi har använt oss av ovan?
+
Was geschieht, wenn der Exponent eine rationale Zahl ist? Werden die bisher genannten Definitionen und Rechenregeln auch gültig sein?
-
Eftersom exempelvis
+
Da zum Beispiel
-
{{Fristående formel||<math>2^{1/2} \cdot 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2</math>}}
+
{{Abgesetzte Formel||<math>2^{1/2} \cdot 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2</math>}}
-
så måste <math> 2^{1/2} </math> vara samma sak som <math>\sqrt{2}</math> i och med att <math>\sqrt2</math> definieras som det tal som uppfyller <math>\sqrt2\cdot\sqrt2 = 2</math>&nbsp;.
+
muss <math> 2^{1/2} </math> dasselbe wie <math> \sqrt{2} </math> sein, weil <math> \sqrt2 </math> definiert wird als die Zahl die <math>\sqrt2\cdot\sqrt2 = 2</math> erfüllt.&nbsp;
-
Allmänt kan vi göra definitionen
+
Generell definiert man
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>a^{1/2} = \sqrt{a}\mbox{.}</math>}}
+
{{Abgesetzte Formel||<math>a^{1/2} = \sqrt{a}\mbox{.}</math>}}
</div>
</div>
-
Vi måste då förutsätta att <math>a\ge 0</math>, eftersom inget reellt tal multiplicerat med sig själv kan ge ett negativt tal.
+
Wir müssen annehmen, dass <math>a \ge 0</math>, nachdem keine reelle Zahl mit sich selbst multipliziert eine negative Zahl ergibt.
-
Man ser också att exempelvis
+
Wie haben aber zum Beispiel auch
-
{{Fristående formel||<math>5^{1/3} \cdot 5^{1/3} \cdot 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5</math>}}
+
{{Abgesetzte Formel||<math>5^{1/3} \cdot 5^{1/3} \cdot 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5</math>}}
-
som innebär att <math>\,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\,</math> vilket kan generaliseras till att
+
Was bedeuten muss, dass <math>\,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\,</math> was durch folgende Rechenregel für <math> a \ge 0 </math> und <math> n \in </math> '''N''' verallgemeinert werden kann
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>a^{1/n} = \sqrt[\scriptstyle n]{a}\mbox{.}</math>}}
+
{{Abgesetzte Formel||<math>a^{1/n} = \sqrt[\scriptstyle n]{a}\mbox{.}</math>}}
</div>
</div>
-
Genom att kombinera denna definition med en av de tidigare potenslagarna <math>((a^m)^n=a^{m\cdot n})</math> får vi att, för alla <math>a\ge0</math> gäller att
+
Indem man diese Regel mit der Regel <math>((a^m)^n=a^{m\cdot n})</math> kombiniert, sieht man, dass für alle <math>a\ge0</math> folgendes gilt
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>a^{m/n} = (a^m)^{1/n} = \sqrt[\scriptstyle n]{a^m}</math>}}
+
{{Abgesetzte Formel||<math>a^{m/n} = (a^m)^{1/n} = \sqrt[\scriptstyle n]{a^m}</math>}}
-
eller
+
oder
-
{{Fristående formel||<math>a^{m/n} = (a^{1/n})^m = (\sqrt[\scriptstyle n]{a}\,)^m\mbox{.} </math>}}
+
{{Abgesetzte Formel||<math>a^{m/n} = (a^{1/n})^m = (\sqrt[\scriptstyle n]{a}\,)^m\mbox{.} </math>}}
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 8'''
+
''' Beispiel 8'''
<ol type="a">
<ol type="a">
<li><math>27^{1/3} = \sqrt[\scriptstyle 3]{27}
<li><math>27^{1/3} = \sqrt[\scriptstyle 3]{27}
-
= 3\quad</math> eftersom <math>3 \cdot 3 \cdot 3 =27</math></li>
+
= 3\quad</math> ,da <math>3 \cdot 3 \cdot 3 =27</math></li>
<li><math>1000^{-1/3} = \frac{1}{1000^{1/3}}
<li><math>1000^{-1/3} = \frac{1}{1000^{1/3}}
= \frac{1}{(10^3)^{1/3}}
= \frac{1}{(10^3)^{1/3}}
Zeile 301: Zeile 313:
</div>
</div>
 +
== E - Potenzen vergleichen ==
-
== Jämförelse av potenser ==
+
Wenn man Potenzen ohne Taschenrechner vergleichen möchte, kann man dies durch das vergleichen von Basis oder Exponent machen.
-
Om man utan tillgång till miniräknare vill jämföra storleken av potenser, kan man i vissa fall avgöra detta genom att jämföra basen eller exponenten.
+
Wenn die Basis größer als 1 ist, wird die Potenz größer, je größer der Exponent wird. Wenn die Basis kleiner als 1, aber größer als 0 ist, gilt das Umgekehrte. Die Potenz wird kleiner, je größer der Exponent wird.
-
 
+
-
Om basen i en potens är större är än <math>1</math> så blir potensen större ju större exponenten är. Är däremot basen mellan <math>0</math> och <math>1</math> så blir potensen mindre istället när exponenten växer.
+
<div class="exempel">
<div class="exempel">
-
'''Exempel 9'''
+
''' Beispiel 9'''
<ol type="a">
<ol type="a">
-
<li><math>\quad 3^{5/6} > 3^{3/4}\quad</math> eftersom basen <math>3</math> är större än <math>1</math> och den första exponenten <math>5/6</math> är större än den andra exponenten <math>3/4</math>.</li>
+
<li><math>\quad 3^{5/6} > 3^{3/4}\quad</math> weil die Basis <math>3</math> größer als <math>1</math> und der erste Exponent <math>5/6</math> größer als der zweite Exponent <math>3/4</math> ist.</li>
-
<li><math>\quad 3^{-3/4} > 3^{-5/6}\quad</math> eftersom basen är större än <math>1</math> och exponenterna uppfyller <math> -3/4 > - 5/6</math>.</li>
+
<li><math>\quad 3^{-3/4} > 3^{-5/6}\quad</math> weil die Basis größer als <math>1</math> ist und für die Exponenten gilt, dass <math> -3/4 > - 5/6</math>.</li>
-
<li><math> \quad 0{,}3^5 < 0{,}3^4 \quad</math> eftersom basen <math> 0{,}3</math> är mellan <math>0</math> och <math>1</math> och <math>5 > 4</math>.
+
<li><math> \quad 0{,}3^5 < 0{,}3^4 \quad</math> da die Basis <math> 0{,}3</math> zwischen <math>0</math> und <math>1</math> ist, und <math>5 > 4</math>.
</ol>
</ol>
</div>
</div>
-
Har en potens en positiv exponent så blir potensen större ju större basen är. Det motsatta gäller om exponenten är negativ: då blir potensen mindre när basen blir större.
+
Wenn eine Potenz einen positiven Exponenten hat, wird die Potenz größer, je größer die Basis wird. Das Umgekehrte gilt für negative Exponenten; je größer die Basis, desto kleiner wird die Potenz.
<div class="exempel">
<div class="exempel">
-
'''Exempel 10'''
+
''' Beispiel 10'''
<ol type="a">
<ol type="a">
-
<li><math>\quad 5^{3/2} > 4^{3/2}\quad</math> eftersom basen <math>5</math> är större än basen <math>4</math> och båda potenserna har samma positiva exponenten <math>3/2</math>.</li>
+
<li><math>\quad 5^{3/2} > 4^{3/2}\quad</math> weil die Basis <math>5</math> größer als die Basis <math>4</math> ist und beide Potenzen denselben positiven Exponenten <math>3/2</math> haben.</li>
-
<li><math> \quad 2^{-5/3} > 3^{-5/3}\quad</math> eftersom baserna uppfyller <math>2<3</math> och potenserna har den negativa exponenten <math>-5/3</math>.</li>
+
<li><math> \quad 2^{-5/3} > 3^{-5/3}\quad</math> weil für die Basen gilt, dass <math>2<3</math>, und die Potenzen den negativen Exponenten <math>-5/3</math> haben.</li>
</ol>
</ol>
</div>
</div>
-
Ibland krävs det en omskrivning av potenserna för att kunna avgöra storleksförhållandet. Vill man t.ex. jämföra <math>125^2</math> med <math>36^3</math> kan man göra omskrivningarna
+
In manchen Fällen muss man die Potenzen zuerst umschreiben, bevor man sie vergleichen kann. Um zum Beispiel <math>125^2</math> mit <math>36^3</math> zu vergleichen, kann man die Potenzen umschreiben:
-
{{Fristående formel||<math>
+
{{Abgesetzte Formel||<math>
-
125^2 = (5^3)^2 = 5^6\quad \text{och}\quad 36^3 = (6^2)^3 = 6^6
+
125^2 = (5^3)^2 = 5^6\quad \text{und}\quad 36^3 = (6^2)^3 = 6^6
</math>}}
</math>}}
-
varefter man kan konstatera att <math>36^3 > 125^2</math>.
+
womit man sieht, dass <math>36^3 > 125^2</math>.
<div class="exempel">
<div class="exempel">
-
'''Exempel 11'''
+
''' Beispiel 11'''
-
Avgör vilket tal som är störst av
+
Bestimme welche Zahl von folgenden Zahlenpaaren die größere ist.
<ol type="a">
<ol type="a">
-
<li><math> 25^{1/3} </math>&nbsp; och &nbsp;<math> 5^{3/4} </math>
+
<li><math> 25^{1/3} </math>&nbsp; und &nbsp;<math> 5^{3/4} </math>.
<br>
<br>
<br>
<br>
-
Basen 25 kan skrivas om i termer av den andra basen <math>5</math> genom att <math>25= 5\cdot 5= 5^2</math>. Därför är
+
Die Basis 25 kann durch Umschreiben zur Basis 5 geschrieben werden: <math>25= 5\cdot 5= 5^2</math>. Deshalb ist
-
{{Fristående formel||<math>25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3}</math>}}
+
{{Abgesetzte Formel||<math>25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3}</math>}}
-
och då ser vi att
+
Daher ist
-
{{Fristående formel||<math>5^{3/4} > 25^{1/3} </math>}}
+
{{Abgesetzte Formel||<math>5^{3/4} > 25^{1/3} </math>}}
-
eftersom <math>\frac{3}{4} > \frac{2}{3}</math> och basen <math>5</math> är större än <math>1</math>.</li>
+
weil <math>\frac{3}{4} > \frac{2}{3}</math> und die Basis <math>5</math> größer als <math>1</math> ist.</li>
-
<li><math>(\sqrt{8}\,)^5 </math>&nbsp; och <math>128</math>
+
<li><math>(\sqrt{8}\,)^5 </math>&nbsp; und <math>128</math>.
<br>
<br>
<br>
<br>
-
Både <math>8</math> och <math>128</math> kan skrivas som potenser av <math>2</math>
+
<math>8</math> und <math>128</math> können beide mit der Basis <math>2</math> geschrieben werden
-
{{Fristående formel||<math>\eqalign{8 &= 2\cdot 4 = 2 \cdot 2 \cdot 2 = 2^3\mbox{,}\\ 128 &= 2\cdot 64 = 2\cdot 2\cdot 32 = 2\cdot 2\cdot 2\cdot 16 = 2\cdot 2\cdot 2\cdot 2\cdot 8\\ &= 2\cdot 2\cdot 2\cdot 2\cdot 2^3 = 2^7\mbox{.}}</math>}}
+
{{Abgesetzte Formel||<math>\eqalign{8 &= 2\cdot 4 = 2 \cdot 2 \cdot 2 = 2^3\mbox{,}\\ 128 &= 2\cdot 64 = 2\cdot 2\cdot 32 = 2\cdot 2\cdot 2\cdot 16 = 2\cdot 2\cdot 2\cdot 2\cdot 8\\ &= 2\cdot 2\cdot 2\cdot 2\cdot 2^3 = 2^7\mbox{.}}</math>}}
-
Detta betyder att
+
Dies bedeutet, dass
-
{{Fristående formel||<math>\begin{align*}
+
{{Abgesetzte Formel||<math>\begin{align*}
-
(\sqrt{8}\,)^5 &= (8^{1/2})^5 = (8)^{5/2} = (2^3)^{5/2}
+
(\sqrt{8}\,)^5 &= (8^{1/2})^5 = (8)^{5/2} = (2^3)^{5/2}
-
= 2^{3\cdot\frac{5}{2}}= 2^{15/2}\\
+
= 2^{3\cdot\frac{5}{2}}= 2^{15/2}\\
-
128 &= 2^7 = 2^{14/2}
+
128 &= 2^7 = 2^{14/2}
-
\end{align*}</math>}}
+
\end{align*}</math>}}
-
och därför är
+
Daher ist
-
{{Fristående formel||<math>(\sqrt{8}\,)^5 > 128 </math>}}
+
{{Abgesetzte Formel||<math>(\sqrt{8}\,)^5 > 128 </math>}}
-
i och med att <math>\frac{15}{2} > \frac{14}{2}</math> och basen <math>2</math> är större än <math>1</math>.</li>
+
weil <math>\frac{15}{2} > \frac{14}{2}</math> und die Basis <math>2</math> größer als <math>1</math> ist.</li>
-
<li><math> (8^2)^{1/5} </math> och <math> (\sqrt{27}\,)^{4/5}</math>
+
<li><math> (8^2)^{1/5} </math> und <math> (\sqrt{27}\,)^{4/5}</math>.
<br>
<br>
<br>
<br>
-
Eftersom <math>8=2^3</math> och <math>27=3^3</math> så kan ett första steg vara att förenkla och skriva talen som potenser av <math>2</math> respektive <math>3</math>,
+
Wegen <math>8=2^3</math> und <math>27=3^3</math>, können die Basen als Exponenten von <math>2</math> bzw. <math>3</math> geschrieben werden.
-
{{Fristående formel||<math>\begin{align*}
+
{{Abgesetzte Formel||<math>\begin{align*}
-
(8^2)^{1/5} &= (8)^{2/5} = (2^3)^{2/5} = 2^{3\cdot \frac{2}{5}}
+
(8^2)^{1/5} &= (8)^{2/5} = (2^3)^{2/5} = 2^{3\cdot \frac{2}{5}}
-
= 2^{6/5}\mbox{,}\\
+
= 2^{6/5}\mbox{,}\\
-
(\sqrt{27}\,)^{4/5} &= (27^{1/2})^{4/5}
+
(\sqrt{27}\,)^{4/5} &= (27^{1/2})^{4/5}
-
= 27^{ \frac{1}{2} \cdot \frac{4}{5}} = 27^{2/5}
+
= 27^{ \frac{1}{2} \cdot \frac{4}{5}} = 27^{2/5}
-
= (3^3)^{2/5} = 3^{3 \cdot \frac{2}{5}}
+
= (3^3)^{2/5} = 3^{3 \cdot \frac{2}{5}}
-
= 3^{6/5}\mbox{.}
+
= 3^{6/5}\mbox{.}
\end{align*}</math>}}
\end{align*}</math>}}
-
Nu ser vi att
+
Jetzt sieht man, dass
-
{{Fristående formel||<math>(\sqrt{27}\,)^{4/5} > (8^2)^{1/5} </math>}}
+
{{Abgesetzte Formel||<math>(\sqrt{27}\,)^{4/5} > (8^2)^{1/5} </math>}}
-
eftersom <math> 3>2</math> och exponenten <math>\frac{6}{5}</math> är positiv.
+
weil <math> 3>2</math> und der Exponent <math>\frac{6}{5}</math> positiv ist.
-
<li><math> 3^{1/3} </math>&nbsp; och &nbsp;<math> 2^{1/2}</math>
+
<li><math> 3^{1/3} </math>&nbsp; und &nbsp;<math> 2^{1/2}</math>
<br>
<br>
<br>
<br>
-
Vi skriver exponenterna med gemensam nämnare
+
Wir schreiben die Exponenten mit gemeinsamen Nennern
-
{{Fristående formel||<math>\frac{1}{3} = \frac{2}{6} \quad</math> och <math>\quad \frac{1}{2} = \frac{3}{6}</math>.}}
+
{{Abgesetzte Formel||<math>\frac{1}{3} = \frac{2}{6} \quad</math> und <math>\quad \frac{1}{2} = \frac{3}{6}</math>.}}
-
Då har vi att
+
Dies ergibt
-
{{Fristående formel||<math>\begin{align*}
+
{{Abgesetzte Formel||<math>\begin{align*}
-
3^{1/3} &= 3^{2/6} = (3^2)^{1/6} = 9^{1/6}\\
+
3^{1/3} &= 3^{2/6} = (3^2)^{1/6} = 9^{1/6}\\
-
2^{1/2} &= 2^{3/6} = (2^3)^{1/6} = 8^{1/6}
+
2^{1/2} &= 2^{3/6} = (2^3)^{1/6} = 8^{1/6}
\end{align*}</math>}}
\end{align*}</math>}}
-
och vi ser att
+
Daher ist
-
{{Fristående formel||<math> 3^{1/3} > 2^{1/2} </math>}}
+
{{Abgesetzte Formel||<math> 3^{1/3} > 2^{1/2} </math>}}
-
eftersom <math> 9>8</math> och exponenten <math>1/6</math> är positiv.</li>
+
weil <math> 9>8</math> und der Exponent <math>1/6</math> positiv ist.</li>
</ol>
</ol>
</div>
</div>
-
[[1.3 Övningar|Övningar]]
 
 +
Noch Fragen zu diesem Kapitel? Dann schau nach im Kursforum (Du findest den Link in der Student Lounge) oder frag nach per Skype bei ombTutor <skype style="call" action="call">ombTutor</skype> <skype style="chat" action="chat">ombTutor</skype>
-
<div class="inforuta">
+
Keine Fragen mehr? Dann mach weiter mit den '''[[1.3 Übungen|Übungen]]'''.
-
'''Råd för inläsning'''
+
-
'''Grund- och slutprov'''
 
-
Efter att du har läst texten och arbetat med övningarna ska du göra grund- och slutprovet för att bli godkänd på detta avsnitt. Du hittar länken till proven i din student lounge.
+
<div class="inforuta" style="width:580px;">
 +
'''Tipps fürs Lernen'''
 +
'''Diagnostische Prüfung und Schlussprüfung'''
-
'''Tänk på att:'''
+
Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest die links zu den Prüfungen in Deiner "Student Lounge".
-
Ett tal upphöjt till 0 är 1, om talet (basen) är skild från 0.
 
-
 
-
'''Lästips'''
+
'''Bedenke folgendes:'''
 +
 
 +
Eine Potenz bei der der Exponent 0 ist, ist immer 1, solange die Basis nicht 0 ist.
 +
 
 +
'''Literaturhinweise'''
-
för dig som vill fördjupa dig ytterligare eller behöver en längre förklaring
+
Für die, die tiefer in die Materie einsteigen wollen, sind hier einige Links ang
 +
eführt:
-
[http://en.wikipedia.org/wiki/Exponent Läs mer om potenser på engelska Wikipedia]
+
[http://de.wikipedia.org/wiki/Potenz_(Mathematik) Mehr über Potenzen in der Wikipedia]
-
[http://primes.utm.edu/ Vilket är det största primtalet? Läs mer på The Prime Pages]
+
[http://primes.utm.edu/ Welche ist die größte Primzahl? Lies Mehr auf der Primzahlseite (engl.)]
-
'''Länktips'''
+
'''Nützliche Websites'''
-
[http://www.ltcconline.net/greenl/java/BasicAlgebra/ExponentRules/ExponentRules.html Här kan du träna på potenslagarna]
+
[http://www.ltcconline.net/greenl/java/BasicAlgebra/ExponentRules/ExponentRules.html Hier kannst Du die Rechenregeln fü Potenzen üben (engl.)]
</div>
</div>

Aktuelle Version

       Theorie          Übungen      

Inhalt:

  • Positive ganze Exponenten
  • Negative ganze Exponenten
  • Rationale Exponenten
  • Die Rechenregeln für Exponenten

Lernziele:

Nach diesem Abschnitt sollst Du ...

  • ... die Begriffe Basis und Exponent verstehen.
  • ... Potenzen mit ganzen Exponenten berechnen können.
  • ... die Rechenregeln für Exponenten beherrschen.
  • ... wissen, wann die Rechenregeln für Potenzen gültig sind (bei positiven Basen).
  • ... Potenzen der Größe nach vergleichen können (mit Hilfe der Größe des Exponenten/der Basis).


Die Lernziele sind Dir aus der Schule noch bestens vertraut und Du weisst ganz genau, wie man die zugehörigen Rechnungen ausführt? Dann kannst Du auch gleich mit den Prüfungen beginnen (Du findest den Link in der Student Lounge).


A - Ganze Exponenten

Die Multiplikation ist eine Kurzschreibweise das wiederholte Addieren, zum Beispiel,

\displaystyle 4 + 4 + 4 + 4 + 4 = 4 \cdot 5\mbox{.}

Analog definiert man eine Potenz als eine wiederholte Multiplikation mit derselben Zahl:

\displaystyle 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5\mbox{.}

Die Zahl 4 wird als Basis bezeichnet, und die 5 wird als Exponent bezeichnet.

Beispiel 1

  1. \displaystyle 5^3 = 5 \cdot 5 \cdot 5 = 125
  2. \displaystyle 10^5 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 100 000
  3. \displaystyle 0{,}1^3 = 0{,}1 \cdot 0{,}1 \cdot 0{,}1 = 0{,}001
  4. \displaystyle (-2)^4 = (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16, aber \displaystyle -2^4 = -(2^4) = - (2 \cdot 2 \cdot 2 \cdot 2) = -16
  5. \displaystyle 2\cdot 3^2 = 2 \cdot 3 \cdot 3 = 18, aber \displaystyle (2\cdot3)^2 = 6^2 = 36

Beispiel 2

  1. \displaystyle \left(\displaystyle\frac{2}{3}\right)^3 = \displaystyle\frac{2}{3}\cdot \displaystyle\frac{2}{3} \cdot \displaystyle\frac{2}{3} = \displaystyle\frac{2^3}{3^3} = \displaystyle\frac{8}{27}
  2. \displaystyle (2\cdot 3)^4 = (2\cdot 3)\cdot(2\cdot 3)\cdot(2\cdot 3)\cdot(2\cdot 3)
    \displaystyle \phantom{(2\cdot 3)^4}{} = 2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 3\cdot 3\cdot 3 = 2^4 \cdot 3^4 = 1296

Das letzte Beispiel kann durch zwei sehr nützliche Rechenregeln verallgemeinert werden:

\displaystyle \left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{und}\quad (ab)^m = a^m b^m\,\mbox{.}

für \displaystyle a,b \in \Bbb{R} \setminus \{0\} und \displaystyle m \in \, \Bbb{N}.

B - Rechenregeln für Potenzen

Weiter können noch einige Rechenregeln für Potenzen hergeleitet werden. Zum Beispiel sieht man, dass

\displaystyle 2^3 \cdot 2^5 = \underbrace{\,2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm Faktoren }} \cdot \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 5\ {\rm Faktoren }} = \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ (3 + 5)\ {\rm Faktoren}} = 2^{3+5} = 2^8

Was durch folgende Regel für \displaystyle a \in \Bbb{R} und \displaystyle m,n \in \Bbb{N} verallgemeinert werden kann

\displaystyle a^m \cdot a^n = a^{m+n}\mbox{.}

Bei der Division mit Potenzen mit derselben Basis gilt folgendes

\displaystyle \frac{2^7}{2^3}=\displaystyle\frac{ 2\cdot 2\cdot 2\cdot 2\cdot \not{2}\cdot \not{2}\cdot \not{2} }{ \not{2}\cdot \not{2}\cdot \not{2}} = 2^{7-3}=2^4\mbox{.}

Was durch folgende Regel für \displaystyle a \in \Bbb{R} und \displaystyle m,n \in \Bbb{N} verallgemeinert werden kann

\displaystyle \displaystyle\frac{a^m}{a^n}= a^{m-n}\mbox{.}

Wenn die Basis selbst ein Exponent ist, gibt es eine wichtige Rechenregel. Zum Beispiel ist

\displaystyle (5^2)^3 = 5^2 \cdot 5^2 \cdot 5^2 = \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm Faktoren}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm Faktoren}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm Faktoren}} = \underbrace{\,5\cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm mal}\ 2\ {\rm Faktoren}} = 5^{2 \cdot 3} = 5^6\mbox{}

und

\displaystyle (5^3)^2 = 5^3\cdot5^3= \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm Faktoren}} \cdot \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm Faktoren}} = \underbrace{\,5\cdot 5 \cdot 5\,\cdot\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm mal}\ 3\ {\rm Faktoren}}=5^{3\cdot2}=5^6\mbox{.}


Dies kann durch folgende Rechenregel für \displaystyle a \in \Bbb{R} und \displaystyle m,n \in \Bbb{N} verallgemeinert werden

\displaystyle (a^m)^n = a^{m \cdot n}\mbox{.}

Beispiel 3

  1. \displaystyle 2^9 \cdot 2^{14} = 2^{9+14} = 2^{23}
  2. \displaystyle 5\cdot5^3 = 5^1\cdot5^3 = 5^{1+3} = 5^4
  3. \displaystyle 3^2 \cdot 3^3 \cdot 3^4 = 3^{2+3+4} = 3^9
  4. \displaystyle 10^5 \cdot 1000 = 10^5 \cdot 10^3 = 10^{5+3} = 10^8

Beispiel 4

  1. \displaystyle \frac{3^{100}}{3^{98}} = 3^{100-98} = 3^2
  2. \displaystyle \frac{7^{10}}{7} = \frac{7^{10}}{7^1} = 7^{10-1} = 7^9


Wenn ein Bruch denselben Zähler und Nenner hat, geschieht folgendes:

\displaystyle \frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{sowie}\quad \frac{5^3}{5^3} = \frac{ 5 \cdot 5 \cdot 5 }{ 5 \cdot 5 \cdot 5 } = \frac{125}{125} = 1\mbox{.}


Damit die Rechenregeln für Potenzen gültig sein sollen, definiert man, dass für alle \displaystyle a \ne 0


\displaystyle a^0 = 1\mbox{.}

Es kann auch vorkommen, dass der Exponent im Nenner größer ist als der Exponent im Zähler. Zum Beispiel:

\displaystyle \frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{und}\quad \frac{3^4}{3^6} = \frac{\not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} }{ \not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} \cdot 3 \cdot 3} = \frac{1}{3 \cdot 3} = \frac{1}{3^2}\mbox{.}

Dies muss bedeuten dass

\displaystyle 3^{-2} = \frac{1}{3^2}\mbox{.}

Die allgemeine Definition von negativen Exponenten lautet für alle \displaystyle a \ne 0

\displaystyle a^{-n} = \frac{1}{a^n}\mbox{.}


Beispiel 5

  1. \displaystyle \frac{7^{1293}}{7^{1293}} = 7^{1293 - 1293} = 7^0 = 1
  2. \displaystyle 3^7 \cdot 3^{-9} \cdot 3^4 = 3^{7+(-9)+4} = 3^2
  3. \displaystyle 0{,}001 = \frac{1}{1000} = \frac{1}{10^3} = 10^{-3}
  4. \displaystyle 0{,}008 = \frac{8}{1000} = \frac{1}{125} = \frac{1}{5^3} = 5^{-3}
  5. \displaystyle \left(\frac{2}{3}\right)^{-1} = \frac{1}{\displaystyle\left(\frac{2}{3}\right)^1} = 1\cdot \frac{3}{2} = \frac{3}{2}
  6. \displaystyle \left(\frac{1}{3^2}\right)^{-3} = (3^{-2})^{-3} = 3^{(-2)\cdot(-3)}=3^6
  7. \displaystyle 0,01^5 = (10^{-2})^5 = 10^{-2 \cdot 5} = 10^{-10}

Wenn die Basis einer Potenz \displaystyle -1 ist, ist der Ausdruck entweder \displaystyle -1 oder \displaystyle +1 je nach Exponent.

\displaystyle \eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{etc.}}

Die allgemeine Rechenregel ist, dass \displaystyle (-1)^n gleich \displaystyle -1 ist, wenn \displaystyle n ungerade ist, und \displaystyle +1, wenn \displaystyle n gerade ist.


Beispiel 6

  1. \displaystyle (-1)^{56} = 1\quad weil \displaystyle 56 gerade ist
  2. \displaystyle \frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad weil 11 ungerade ist
  3. \displaystyle \frac{(-2)^{127}}{2^{130}} = \frac{(-1 \cdot 2)^{127}}{2^{130}} = \frac{(-1)^{127} \cdot 2^{127}}{2^{130}} = \frac{-1 \cdot 2^{127}}{2^{130}} = - 2^{127-130} = -2^{-3} = - \frac{1}{2^3} = - \frac{1}{8}

C - Basis wechseln

Beim Vereinfachen von Ausdrücken, geht es oft darum, Zahlen als Potenzen mit derselben Basis zu schreiben. Häufige Basen sind 2, 3, 4 und 5, und daher sollte man Potenzen von diesen Basen zu erkennen lernen. Zum Beispiel:

\displaystyle 4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots
\displaystyle 9=3^2,\;\; 27=3^3,\;\; 81=3^4,\;\; 243=3^5,\;\ldots
\displaystyle 25=5^2,\;\; 125=5^3,\;\; 625=5^4,\;\ldots

Und auch

\displaystyle \frac{1}{4}=\frac{1}{2^2} = 2^{-2},\;\; \frac{1}{8}=\frac{1}{2^3}=2^{-3},\;\; \frac{1}{16}=\frac{1}{2^4}=2^{-4},\;\ldots
\displaystyle \frac{1}{9}=\frac{1}{3^2}=3^{-2},\;\; \frac{1}{27}=\frac{1}{3^3}=3^{-3},\;\ldots
\displaystyle \frac{1}{25}=\frac{1}{5^2}=5^{-2},\;\; \frac{1}{125}=\frac{1}{5^3}=5^{-3},\;\ldots

Usw.

Beispiel 7

  1. Schreibe \displaystyle \ 8^3 \cdot 4^{-2} \cdot 16\ als eine Potenz mit der Basis 2.

    \displaystyle 8^3 \cdot 4^{-2} \cdot 16 = (2^3)^3 \cdot (2^2)^{-2} \cdot 2^4 = 2^{3 \cdot 3} \cdot 2^{2 \cdot (-2)} \cdot 2^4
    \displaystyle \qquad\quad{}= 2^9 \cdot 2^{-4} \cdot 2^4 = 2^{9-4+4} =2^9
  2. Schreibe \displaystyle \ \frac{27^2 \cdot (1/9)^{-2}}{81^2}\ als eine Potenz mit der Basis 3.

    \displaystyle \frac{27^2 \cdot (1/9)^{-2}}{81^2} = \frac{(3^3)^2 \cdot (1/3^2)^{-2}}{(3^4)^2} = \frac{(3^3)^2 \cdot (3^{-2})^{-2}}{(3^4)^2}
    \displaystyle \qquad\quad{} = \frac{3^{3 \cdot 2} \cdot 3^{(-2) \cdot (-2)}}{3^{4 \cdot 2}} = \frac{3^6\cdot 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2
  3. Vereinfache \displaystyle \frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4} so weit wie möglich.

    \displaystyle \frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4} = \frac{3^4 \cdot (2^5)^2 \cdot \displaystyle\frac{2^2}{3^2}}{2^{4+1}+2^4} = \frac{3^4 \cdot 2^{5 \cdot 2} \cdot \displaystyle\frac{2^2}{3^2}}{2^4 \cdot 2^1 +2^4} = \frac{3^4 \cdot 2^{10} \cdot \displaystyle\frac{2^2}{3^2}}{2^4 \cdot(2^1+1)}
    \displaystyle \qquad\quad{} = \frac{ \displaystyle\frac{3^4 \cdot 2^{10} \cdot 2^2}{3^2}}{2^4 \cdot 3} = \frac{ 3^4 \cdot 2^{10} \cdot 2^2 }{3^2 \cdot 2^4 \cdot 3 } = 3^{4-2-1} \cdot 2^{10+2-4} = 3^1 \cdot 2^8= 3\cdot 2^8


D - Rationale Exponenten

Was geschieht, wenn der Exponent eine rationale Zahl ist? Werden die bisher genannten Definitionen und Rechenregeln auch gültig sein?

Da zum Beispiel

\displaystyle 2^{1/2} \cdot 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2

muss \displaystyle 2^{1/2} dasselbe wie \displaystyle \sqrt{2} sein, weil \displaystyle \sqrt2 definiert wird als die Zahl die \displaystyle \sqrt2\cdot\sqrt2 = 2 erfüllt. 

Generell definiert man

\displaystyle a^{1/2} = \sqrt{a}\mbox{.}

Wir müssen annehmen, dass \displaystyle a \ge 0, nachdem keine reelle Zahl mit sich selbst multipliziert eine negative Zahl ergibt.

Wie haben aber zum Beispiel auch

\displaystyle 5^{1/3} \cdot 5^{1/3} \cdot 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5

Was bedeuten muss, dass \displaystyle \,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\, was durch folgende Rechenregel für \displaystyle a \ge 0 und \displaystyle n \in N verallgemeinert werden kann

\displaystyle a^{1/n} = \sqrt[\scriptstyle n]{a}\mbox{.}

Indem man diese Regel mit der Regel \displaystyle ((a^m)^n=a^{m\cdot n}) kombiniert, sieht man, dass für alle \displaystyle a\ge0 folgendes gilt

\displaystyle a^{m/n} = (a^m)^{1/n} = \sqrt[\scriptstyle n]{a^m}

oder

\displaystyle a^{m/n} = (a^{1/n})^m = (\sqrt[\scriptstyle n]{a}\,)^m\mbox{.}

Beispiel 8

  1. \displaystyle 27^{1/3} = \sqrt[\scriptstyle 3]{27} = 3\quad ,da \displaystyle 3 \cdot 3 \cdot 3 =27
  2. \displaystyle 1000^{-1/3} = \frac{1}{1000^{1/3}} = \frac{1}{(10^3)^{1/3}} = \frac{1}{10^{3 \cdot \frac{1}{3}}} = \frac{1}{10^1} = \frac{1}{10}
  3. \displaystyle \frac{1}{\sqrt{8}} = \frac{1}{8^{1/2}} = \frac{1}{(2^3)^{1/2}} = \frac{1}{2^{3/2}} = 2^{-3/2}
  4. \displaystyle \frac{1}{16^{-1/3}} = \frac{1}{(2^4)^{-1/3}} = \frac{1}{2^{-4/3}} = 2^{-(-4/3)}= 2^{4/3}

E - Potenzen vergleichen

Wenn man Potenzen ohne Taschenrechner vergleichen möchte, kann man dies durch das vergleichen von Basis oder Exponent machen.

Wenn die Basis größer als 1 ist, wird die Potenz größer, je größer der Exponent wird. Wenn die Basis kleiner als 1, aber größer als 0 ist, gilt das Umgekehrte. Die Potenz wird kleiner, je größer der Exponent wird.

Beispiel 9

  1. \displaystyle \quad 3^{5/6} > 3^{3/4}\quad weil die Basis \displaystyle 3 größer als \displaystyle 1 und der erste Exponent \displaystyle 5/6 größer als der zweite Exponent \displaystyle 3/4 ist.
  2. \displaystyle \quad 3^{-3/4} > 3^{-5/6}\quad weil die Basis größer als \displaystyle 1 ist und für die Exponenten gilt, dass \displaystyle -3/4 > - 5/6.
  3. \displaystyle \quad 0{,}3^5 < 0{,}3^4 \quad da die Basis \displaystyle 0{,}3 zwischen \displaystyle 0 und \displaystyle 1 ist, und \displaystyle 5 > 4.

Wenn eine Potenz einen positiven Exponenten hat, wird die Potenz größer, je größer die Basis wird. Das Umgekehrte gilt für negative Exponenten; je größer die Basis, desto kleiner wird die Potenz.

Beispiel 10

  1. \displaystyle \quad 5^{3/2} > 4^{3/2}\quad weil die Basis \displaystyle 5 größer als die Basis \displaystyle 4 ist und beide Potenzen denselben positiven Exponenten \displaystyle 3/2 haben.
  2. \displaystyle \quad 2^{-5/3} > 3^{-5/3}\quad weil für die Basen gilt, dass \displaystyle 2<3, und die Potenzen den negativen Exponenten \displaystyle -5/3 haben.

In manchen Fällen muss man die Potenzen zuerst umschreiben, bevor man sie vergleichen kann. Um zum Beispiel \displaystyle 125^2 mit \displaystyle 36^3 zu vergleichen, kann man die Potenzen umschreiben:

\displaystyle

125^2 = (5^3)^2 = 5^6\quad \text{und}\quad 36^3 = (6^2)^3 = 6^6

womit man sieht, dass \displaystyle 36^3 > 125^2.

Beispiel 11

Bestimme welche Zahl von folgenden Zahlenpaaren die größere ist.

  1. \displaystyle 25^{1/3}   und  \displaystyle 5^{3/4} .

    Die Basis 25 kann durch Umschreiben zur Basis 5 geschrieben werden: \displaystyle 25= 5\cdot 5= 5^2. Deshalb ist
    \displaystyle 25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3}

    Daher ist

    \displaystyle 5^{3/4} > 25^{1/3}
    weil \displaystyle \frac{3}{4} > \frac{2}{3} und die Basis \displaystyle 5 größer als \displaystyle 1 ist.
  2. \displaystyle (\sqrt{8}\,)^5   und \displaystyle 128.

    \displaystyle 8 und \displaystyle 128 können beide mit der Basis \displaystyle 2 geschrieben werden
    \displaystyle \eqalign{8 &= 2\cdot 4 = 2 \cdot 2 \cdot 2 = 2^3\mbox{,}\\ 128 &= 2\cdot 64 = 2\cdot 2\cdot 32 = 2\cdot 2\cdot 2\cdot 16 = 2\cdot 2\cdot 2\cdot 2\cdot 8\\ &= 2\cdot 2\cdot 2\cdot 2\cdot 2^3 = 2^7\mbox{.}}

    Dies bedeutet, dass

    \displaystyle \begin{align*}

    (\sqrt{8}\,)^5 &= (8^{1/2})^5 = (8)^{5/2} = (2^3)^{5/2} = 2^{3\cdot\frac{5}{2}}= 2^{15/2}\\ 128 &= 2^7 = 2^{14/2} \end{align*}

    Daher ist

    \displaystyle (\sqrt{8}\,)^5 > 128
    weil \displaystyle \frac{15}{2} > \frac{14}{2} und die Basis \displaystyle 2 größer als \displaystyle 1 ist.
  3. \displaystyle (8^2)^{1/5} und \displaystyle (\sqrt{27}\,)^{4/5}.

    Wegen \displaystyle 8=2^3 und \displaystyle 27=3^3, können die Basen als Exponenten von \displaystyle 2 bzw. \displaystyle 3 geschrieben werden.
    \displaystyle \begin{align*}

    (8^2)^{1/5} &= (8)^{2/5} = (2^3)^{2/5} = 2^{3\cdot \frac{2}{5}} = 2^{6/5}\mbox{,}\\ (\sqrt{27}\,)^{4/5} &= (27^{1/2})^{4/5} = 27^{ \frac{1}{2} \cdot \frac{4}{5}} = 27^{2/5} = (3^3)^{2/5} = 3^{3 \cdot \frac{2}{5}} = 3^{6/5}\mbox{.} \end{align*}

    Jetzt sieht man, dass

    \displaystyle (\sqrt{27}\,)^{4/5} > (8^2)^{1/5}

    weil \displaystyle 3>2 und der Exponent \displaystyle \frac{6}{5} positiv ist.

  4. \displaystyle 3^{1/3}   und  \displaystyle 2^{1/2}

    Wir schreiben die Exponenten mit gemeinsamen Nennern
    \displaystyle \frac{1}{3} = \frac{2}{6} \quad und \displaystyle \quad \frac{1}{2} = \frac{3}{6}.

    Dies ergibt

    \displaystyle \begin{align*}

    3^{1/3} &= 3^{2/6} = (3^2)^{1/6} = 9^{1/6}\\ 2^{1/2} &= 2^{3/6} = (2^3)^{1/6} = 8^{1/6} \end{align*}

    Daher ist

    \displaystyle 3^{1/3} > 2^{1/2}
    weil \displaystyle 9>8 und der Exponent \displaystyle 1/6 positiv ist.


Noch Fragen zu diesem Kapitel? Dann schau nach im Kursforum (Du findest den Link in der Student Lounge) oder frag nach per Skype bei ombTutor My status My status

Keine Fragen mehr? Dann mach weiter mit den Übungen.


Tipps fürs Lernen

Diagnostische Prüfung und Schlussprüfung

Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest die links zu den Prüfungen in Deiner "Student Lounge".


Bedenke folgendes:

Eine Potenz bei der der Exponent 0 ist, ist immer 1, solange die Basis nicht 0 ist.

Literaturhinweise

Für die, die tiefer in die Materie einsteigen wollen, sind hier einige Links ang eführt:

Mehr über Potenzen in der Wikipedia

Welche ist die größte Primzahl? Lies Mehr auf der Primzahlseite (engl.)


Nützliche Websites

Hier kannst Du die Rechenregeln fü Potenzen üben (engl.)