Binomialkoeffizient

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (21:07, 30. Sep. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht eine dazwischen liegende Version mit ein.)
Zeile 2: Zeile 2:
<math> \binom{n}{k} = \dfrac{n!}{(n-k)!k!} </math>
<math> \binom{n}{k} = \dfrac{n!}{(n-k)!k!} </math>
-
mit <math> n /in N , k /in N , n /ge k </math>
+
mit <math> n \in N , k \in N , n \ge k </math>
<div class="exempel">
<div class="exempel">
Zeile 9: Zeile 9:
<ol>
<ol>
<li><math> \binom{n}{k} = \binom{n}{n-k}</math><br>
<li><math> \binom{n}{k} = \binom{n}{n-k}</math><br>
-
<math>\binom{n}{n-k} = \dfrac{n!}{(n-n+k)!(n-k)!} = \dfrac{n!}{(k)!(n-k)!} = \binom{n}{k}
+
<math>\binom{n}{n-k} = \dfrac{n!}{(n-n+k)!(n-k)!} = \dfrac{n!}{(k)!(n-k)!} = \binom{n}{k} </math>
</li>
</li>
-
<li><math> \binom{n}{0} = 1 </math><br>
+
<li> <math> \binom{n}{0} = 1 </math> <br>
-
<math> \binom{n}{0} = \dfrac{n!}{(n-0)!0!} = \dfrac{n!}{n! \cdot 1} = \dfrac{n!}{n!} = 1
+
<math> \binom{n}{0} = \dfrac{n!}{(n-0)!0!} = \dfrac{n!}{n! \cdot 1} = \dfrac{n!}{n!} = 1 </math>
</li>
</li>
<li><math> \binom{n}{1} = n </math><br>
<li><math> \binom{n}{1} = n </math><br>

Aktuelle Version

Eigenschaften des Binomialkoeffizienten

\displaystyle \binom{n}{k} = \dfrac{n!}{(n-k)!k!} mit \displaystyle n \in N , k \in N , n \ge k

Beispiel 1

  1. \displaystyle \binom{n}{k} = \binom{n}{n-k}
    \displaystyle \binom{n}{n-k} = \dfrac{n!}{(n-n+k)!(n-k)!} = \dfrac{n!}{(k)!(n-k)!} = \binom{n}{k}
  2. \displaystyle \binom{n}{0} = 1
    \displaystyle \binom{n}{0} = \dfrac{n!}{(n-0)!0!} = \dfrac{n!}{n! \cdot 1} = \dfrac{n!}{n!} = 1
  3. \displaystyle \binom{n}{1} = n
    \displaystyle \binom{n}{1} = \dfrac{n!}{(n-1)!1!} = \dfrac{n! n }{(n-1)!n} = \dfrac{n!n }{n!} = n
  4. \displaystyle \binom{n}{n} = 1
    \displaystyle \binom{n}{n} = \dfrac{n!}{(n-n)!n!} = \dfrac{n!}{0!n!} = \dfrac{n!}{1 \cdot n!} = 1
  5. \displaystyle \binom{n}{n-1} = n
    \displaystyle \binom{n}{n-1} = \dfrac{n!}{(n-n+1)!(n-1)!} = \dfrac{n!}{1!(n-1)!} = \dfrac{n!n}{(n-1)!n} = \dfrac{n! n}{n!} = n
  6. \displaystyle \binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n}{k}
    \displaystyle \binom{n-1}{k} + \binom{n-1}{k-1} = \dfrac{(n-1)!}{(n-1-k)!k!} + \dfrac{(n-1)!}{(n-1-(k-1))!(k-1)!}
    \displaystyle = \dfrac{(n-1)!}{(n-1-k)!k!} + \dfrac{(n-1)!k}{(n-k)!(k-1)! k} = \dfrac{(n-1)!(n-k)}{(n-1-k)!k! (n-k)} + \dfrac{(n-1)! k}{(n-k)!k!}
    \displaystyle = \dfrac{(n-1)!(n-k)}{(n-k)!k!} + \dfrac{(n-1)!k}{(n-k)!k!} = \dfrac{(n-1)!(n-k) + (n-1)! k}{(n-k)!k!} = \dfrac{(n-1)!(n-k+k)}{(n-k)!k!}
    \displaystyle = \dfrac{(n-1)!n}{(n-k)!k!} = \dfrac{n!}{(n-k)!k!} = \binom{n}{k}

Das Paskalsche Dreieck

\displaystyle \binom{0}{0}
\displaystyle \binom{1}{0} \ \ \ \binom{1}{1}
\displaystyle \binom{2}{0} \ \ \ \binom{2}{1} \ \ \ \binom{2}{2}
\displaystyle \binom{3}{0} \ \ \ \binom{3}{1} \ \ \ \binom{3}{2} \ \ \ \binom{3}{3}
\displaystyle \binom{4}{0} \ \ \ \binom{4}{1} \ \ \ \binom{4}{2} \ \ \ \binom{4}{3}\ \ \ \binom{4}{4}

\displaystyle 1
\displaystyle 1 \ \ \ \ 1
\displaystyle 1 \ \ \ \ 2 \ \ \ \ 1
\displaystyle 1 \ \ \ \ 3 \ \ \ \ 3 \ \ \ \ 1
\displaystyle 1 \ \ \ \ 4 \ \ \ \ 6 \ \ \ \ 4\ \ \ \ 1
Das Paskalsche Dreieck