2. Algebra

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Ny sida: __NOTOC__ <!-- Don't remove this line --> <!-- A hack to get a popup-window --> {|align="left" | width="220" height="203" |<math>\text{@(a class="image" href="http://smaug.nti.se/temp/KT...)
Aktuelle Version (13:16, 10. Sep. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 22 dazwischen liegende Versionen mit ein.)
Zeile 2: Zeile 2:
<!-- Don't remove this line -->
<!-- Don't remove this line -->
 +
Algebra ist ein Teilgebiet der Mathematik, in dem es um das das Rechnen mit Symbolen und Variablen geht.
 +
Algebra kann vielseitig verwendet werden. Zum Beispiel können geometrische Probleme oft in algebraische Probleme umgewandelt werden, und mit Hilfe von Algebra auch gelöst werden.
-
<!-- A hack to get a popup-window -->
+
In manchen Fällen kann man Ausdrücke nicht exakt berechnen. Der Ausdruck kann zum Beispiel unbekannte Parameter oder Variablen enthalten. Es kann auch so sein, dass der Ausdruck nicht exakt dargestellt werden kann, so wie zum Beispiel der Umfang eines Kreises (<math>2\pi r</math>) oder die Hypotenuse eines Dreiecks (<math>\sqrt{3}</math> zum Beispiel). Es kann sich auch einfach um eine Konstante handeln, die zum Beispiel <math>\dfrac{1-\ln 2}{3}</math> sein kann.
-
{|align="left"
+
-
| width="220" height="203" |<math>\text{@(a class="image" href="http://smaug.nti.se/temp/KTH/film4.html" target="_blank")@(img src="http://wiki.math.se/wikis/2008/forberedandematte1/img_auth.php/0/00/Lars_och_Elin.jpg" alt="Film om algebra")@(/img)@(/a)}</math>
+
-
|}
+
-
'''Varför räknar vi med bokstäver och vem kom på detta?'''
+
[[Image:grafisk lösning.gif|thumb|250px|
 +
Eine lineare Gleichung mit zwei Unbekannten kann geometrisch als eine Gerade interpretiert werden. Die gemeinsame Lösung der beiden Gleichungen (''x'',''y''), entspricht dem Punkt, wo die beiden Geraden sich kreuzen.]]
 +
Deshalb kann es einfacher sein, eine Zahl mit einem Symbol zu repräsentieren, wie zum Beispiel ''a''. Die Lösung einer Gleichung mit ''a'', wird dann aber keine Zahl sein, sondern einen Ausdruck, der ''a'' enthält.
-
''Titta på videon där universitetslektor Lasse Svensson berättar om hur algebran utvecklats och svarar på Elins frågor om Del 2 i kursen.''
+
Eine häufige Anwendung von Algebra ist die Vereinfachung von Ausdrücken. Vereinfachungen können zum Beispiel dann nützlich sein, wenn man eine Funktion differenziert oder wenn man eine Nullstelle sucht.
 +
Durch Vereinfachungen vermeidet man oft Rechenfehler. Eine Vereinfachung zu machen bedeutet, dass man eine Gleichung in eine andere Gleichung umwandelt. Welche Gleichung am "einfachsten" ist, ist meist offensichtlich, aber hängt manchmal von der Situation ab.
 +
Wenn man einen Ausdruck differenziert, ist es oft ein Vorteil, wenn der Ausdruck aus einer Summe von mehreren Ausdrücken besteht. Wenn man aber eine Gleichung lösen möchte, ist es meist ein Vorteil, wenn der Ausdruck aus einem Produkt von mehreren Faktoren besteht. Deshalb ist es wichtig, Algebra gut zu beherrschen, um Ausdrücke transformieren zu können.
 +
'''Dieser Abschnitt, ebenso wie alle anderen, setzt voraus, dass Du keinen Taschenrechner verwendest.'''
 +
''In der Universität sind Taschenrechner bei den Prüfungen nicht zugelassen, zumindest nicht in den Grundkursen.''
 +
<div class="inforuta" style="width:580px;">
 +
'''Um den Abschnitt Algebra zu bestehen'''
 +
# Lese zuerst den Theorieabschnitt und die Beispiele durch.
 +
# Löse danach die Übungen ohne Taschenrechner. Kontrolliere Deine Antworten, indem Du auf "Antwort" klickst. Falls Du Hilfe brauchst, kannst Du auf "Lösung" klicken, um diese mit Deiner Lösung zu vergleichen.
 +
# Wenn Du mit den Übungen fertig bist, kannst Du die diagnostische Prüfung für das aktuelle Kapitel machen.
 +
# Falls Du irgendwelche Schwierigkeiten hast, kannst Du im Forum nach ähnlichen Beiträgen suchen. Wenn Du keinen hilfreichen Beitrag findest, kannst Du selbst eine Frage ins Forum stellen, die ein Mentor (oder anderer Student) innerhalb von ein paar Stunden beantworten wird.
 +
# Wenn Du die diagnostische Prüfung bestanden hast, solltest Du die Schlussprüfung machen. Um die Schlussprüfung zu bestehen, musst Du drei Fragen nacheinander richtig beantworten.
 +
# Wenn Du die diagnostische Prüfung und die Schlussprüfung geschafft hast, hast Du das Kapitel bestanden, und kannst mit dem nächsten Kapitel beginnen.
-
 
+
&nbsp;&nbsp;&nbsp;P.S. Falls Du mit dem Inhalt eines Kapitels schon sehr vertraut bist, kannst Du direkt die Prüfungen machen. Du musst auch dann alle Fragen richtig beantworten, aber Du hast auch mehrere Versuche, um die Prüfungen zu bestehen.</div>
-
 
+
-
 
+
-
Algebra är den gren av matematiken som behandlar räkning med symboliska uttryck och variabler och inte bara räkning med tal.
+
-
 
+
-
 
+
-
Algebra behövs i många situationer, t.ex. kan algebra användas till att beskriva matematiska problem och till att lösa ekvationer. Det går bland annat att beskriva geometriska fakta med hjälp av algebraiska påståenden, och många problem går att lösa med hjälp av algebraiska operationer.
+
-
 
+
-
 
+
-
I en del fall kan man inte räkna ut värdet av ett uttryck till ett numeriskt värde. Anledningen kan vara att uttrycket innehåller obekanta parametrar eller variabler. Det kan också vara så att det är viktigt att ett tal är exakt angivet, t.ex. att en viss cirkel har en omkrets som är exakt <math>4\pi</math>, eller hypotenusans längd för en triangel är <math>\sqrt{3}</math>, eller varför inte att värdet på en konstant är <math>\dfrac{1-\ln 2}{3}</math>.
+
-
 
+
-
 
+
-
[[Bild:grafisk lösning.gif|thumb|250px|En linjär ekvation med två obekanta kan ses som en linje i ett koordinatsystem. Den gemensamma lösningen (''x'',''y'') till dessa ekvationer motsvaras då av den gemensamma punkten för dessa linjer, dvs. skärningspunkten.]]
+
-
Då kan det vara enklast att i uträkningarna kalla talet för exempelvis ''a''. Som svar kan man också acceptera att man inte kommer fram till ett numeriskt värde, utan i stället får ett uttryck som innehåller ''a''.
+
-
 
+
-
En vanlig situation där man kan behöva algebra är förenkling. Det är ofta mycket viktigt att förenkla ett uttryck, t.ex. innan man skall derivera, eller när man löser en ekvation.
+
-
 
+
-
 
+
-
Genom att förenkla minskar man risken för slarvfel och man slipper onödigt arbete. Att förenkla innebär att skriva om ett uttryck från en form till en annan. Vilken form som betraktas som &rdquo;enkel&rdquo; är ibland uppenbart, men det kan också bero på vad man vill göra med uttrycket.
+
-
 
+
-
 
+
-
När man deriverar kan det vara fördelaktigt att formulera uttrycket som en summa av ett antal termer. När man löser en ekvation kan det vara fördelaktigt att formulera det som en produkt av ett antal faktorer. Därför behöver man kunna omvandla uttryck mellan olika former.
+
-
 
+
-
 
+
-
'''Observera att materialet i denna kursdel &mdash; liksom i övriga delar av kursen &mdash; är utformat för att man ska arbeta med det utan hjälp av miniräknare.'''
+
-
 
+
-
''När du kommer till högskolan kommer du nämligen inte att få använda miniräknare på dina "tentor", åtminstone inte på grundkurserna.''
+
-
 
+
-
 
+
-
<div class="inforuta">
+
-
'''Så här lyckas du med Algebran'''
+
-
 
+
-
#Börja med att läsa genomgången till ett avsnitt och tänka igenom exemplen.
+
-
#Arbeta sedan med övningsuppgifterna och försök att lösa dem utan miniräknare. Kontrollera att du kommit fram till rätt svar genom att klicka på svarsknappen. Har du inte det, så kan du klicka på lösningsknappen, för att se hur du ska göra.
+
-
#Gå därefter vidare och svara på frågorna i grundprovet som hör till avsnittet.
+
-
# Skulle du fastna, se efter om någon ställt en fråga om just detta i avsnittets forum. Ställ annars en fråga om du undrar över något. Din lärare (eller en studiekamrat) kommer att besvara den inom några timmar.
+
-
#När du är klar med övningsuppgifterna och grundproven i ett avsnitt så ska du göra slutprovet för att bli godkänd på avsnittet. Där gäller det att svara rätt på tre frågor i följd för att kunna gå vidare.
+
-
#När du fått alla rätt på både grundprov och slutprov, så är du godkänd på den delen och kan gå vidare till Del 3 i kursen.
+
-
 
+
-
&nbsp;&nbsp;&nbsp;PS. Tycker du att innehållet i ett avsnitt känns väldigt bekant, så kan du testa att gå direkt till grundprovet och slutprovet. Du måste få alla rätt på ett prov, men kan göra om provet flera gånger, om du inte lyckas på första försöket. Det är ditt senaste resultat som visas i statistiken.
+
-
 
+
-
</div>
+

Aktuelle Version


Algebra ist ein Teilgebiet der Mathematik, in dem es um das das Rechnen mit Symbolen und Variablen geht.

Algebra kann vielseitig verwendet werden. Zum Beispiel können geometrische Probleme oft in algebraische Probleme umgewandelt werden, und mit Hilfe von Algebra auch gelöst werden.

In manchen Fällen kann man Ausdrücke nicht exakt berechnen. Der Ausdruck kann zum Beispiel unbekannte Parameter oder Variablen enthalten. Es kann auch so sein, dass der Ausdruck nicht exakt dargestellt werden kann, so wie zum Beispiel der Umfang eines Kreises (\displaystyle 2\pi r) oder die Hypotenuse eines Dreiecks (\displaystyle \sqrt{3} zum Beispiel). Es kann sich auch einfach um eine Konstante handeln, die zum Beispiel \displaystyle \dfrac{1-\ln 2}{3} sein kann.

Eine lineare Gleichung mit zwei Unbekannten kann geometrisch als eine Gerade interpretiert werden. Die gemeinsame Lösung der beiden Gleichungen (x,y), entspricht dem Punkt, wo die beiden Geraden sich kreuzen.
Eine lineare Gleichung mit zwei Unbekannten kann geometrisch als eine Gerade interpretiert werden. Die gemeinsame Lösung der beiden Gleichungen (x,y), entspricht dem Punkt, wo die beiden Geraden sich kreuzen.

Deshalb kann es einfacher sein, eine Zahl mit einem Symbol zu repräsentieren, wie zum Beispiel a. Die Lösung einer Gleichung mit a, wird dann aber keine Zahl sein, sondern einen Ausdruck, der a enthält.

Eine häufige Anwendung von Algebra ist die Vereinfachung von Ausdrücken. Vereinfachungen können zum Beispiel dann nützlich sein, wenn man eine Funktion differenziert oder wenn man eine Nullstelle sucht.

Durch Vereinfachungen vermeidet man oft Rechenfehler. Eine Vereinfachung zu machen bedeutet, dass man eine Gleichung in eine andere Gleichung umwandelt. Welche Gleichung am "einfachsten" ist, ist meist offensichtlich, aber hängt manchmal von der Situation ab.

Wenn man einen Ausdruck differenziert, ist es oft ein Vorteil, wenn der Ausdruck aus einer Summe von mehreren Ausdrücken besteht. Wenn man aber eine Gleichung lösen möchte, ist es meist ein Vorteil, wenn der Ausdruck aus einem Produkt von mehreren Faktoren besteht. Deshalb ist es wichtig, Algebra gut zu beherrschen, um Ausdrücke transformieren zu können.

Dieser Abschnitt, ebenso wie alle anderen, setzt voraus, dass Du keinen Taschenrechner verwendest.

In der Universität sind Taschenrechner bei den Prüfungen nicht zugelassen, zumindest nicht in den Grundkursen.


Um den Abschnitt Algebra zu bestehen

  1. Lese zuerst den Theorieabschnitt und die Beispiele durch.
  2. Löse danach die Übungen ohne Taschenrechner. Kontrolliere Deine Antworten, indem Du auf "Antwort" klickst. Falls Du Hilfe brauchst, kannst Du auf "Lösung" klicken, um diese mit Deiner Lösung zu vergleichen.
  3. Wenn Du mit den Übungen fertig bist, kannst Du die diagnostische Prüfung für das aktuelle Kapitel machen.
  4. Falls Du irgendwelche Schwierigkeiten hast, kannst Du im Forum nach ähnlichen Beiträgen suchen. Wenn Du keinen hilfreichen Beitrag findest, kannst Du selbst eine Frage ins Forum stellen, die ein Mentor (oder anderer Student) innerhalb von ein paar Stunden beantworten wird.
  5. Wenn Du die diagnostische Prüfung bestanden hast, solltest Du die Schlussprüfung machen. Um die Schlussprüfung zu bestehen, musst Du drei Fragen nacheinander richtig beantworten.
  6. Wenn Du die diagnostische Prüfung und die Schlussprüfung geschafft hast, hast Du das Kapitel bestanden, und kannst mit dem nächsten Kapitel beginnen.
   P.S. Falls Du mit dem Inhalt eines Kapitels schon sehr vertraut bist, kannst Du direkt die Prüfungen machen. Du musst auch dann alle Fragen richtig beantworten, aber Du hast auch mehrere Versuche, um die Prüfungen zu bestehen.