Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

1.2 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Övningar +Exercises))
Aktuelle Version (07:36, 2. Sep. 2009) (bearbeiten) (rückgängig)
K
 
(Der Versionsvergleich bezieht 20 dazwischen liegende Versionen mit ein.)
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[1.2 Bråkräkning|Theory]]}}
+
{{Nicht gewählter Tab|[[1.2 Brüche|Theorie]]}}
-
{{Vald flik|[[1.2 Exercises|Exercises]]}}
+
{{Gewählter Tab|[[1.2 Übungen|Übungen]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===Exercise 1.2:1===
+
===Übung 1.2:1===
<div class="ovning">
<div class="ovning">
-
Write as one fraction
+
Schreibe folgende Ausdrücke als einen einzigen Bruch und überprüfe Deine Lösungen anschließend, indem Du auf "Antwort" klickst.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 24: Zeile 24:
||<math> \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3}</math>
||<math> \displaystyle \frac{8}{7}+\frac{3}{4}-\frac{4}{3}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 1.2:1|Solution a|Solution 1.2:1a|Solution b|Solution 1.2:1b|Solution c|Solution 1.2:1c|Solution d|Solution 1.2:1d|Solution e|Solution 1.2:1e}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.2:1|Lösung a|Lösung 1.2:1a|Lösung b|Lösung 1.2:1b|Lösung c|Lösung 1.2:1c|Lösung d|Lösung 1.2:1d|Lösung e|Lösung 1.2:1e}}
-
===Exercise 1.2:2===
+
===Übung 1.2:2===
<div class="ovning">
<div class="ovning">
-
Determine the lowest common denominator of
+
Bestimme den kleinsten gemeinsamen Nenner von:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 41: Zeile 41:
|| <math>\displaystyle \frac{2}{45}+\frac{1}{75}</math>
|| <math>\displaystyle \frac{2}{45}+\frac{1}{75}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 1.2:2|Solution a|Solution 1.2:2a|Solution b|Solution 1.2:2b|Solution c|Solution 1.2:2c|Solution d|Solution 1.2:2d}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.2:2|Lösung a|Lösung 1.2:2a|Lösung b|Lösung 1.2:2b|Lösung c|Lösung 1.2:2c|Lösung d|Lösung 1.2:2d}}
-
===Exercise 1.2:3===
+
===Übung 1.2:3===
<div class="ovning">
<div class="ovning">
-
Calculate the following by using the lowest common denominator.
+
Berechne folgende Ausdrücke mit Hilfe des kleinsten gemeinsamen Nenners.
 +
 
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 53: Zeile 54:
|width="50%"| <math>\displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16}</math>
|width="50%"| <math>\displaystyle\frac{1}{24}+\frac{1}{40}-\frac{1}{16}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 1.2:3|Solution a|Solution 1.2:3a|Solution b|Solution 1.2:3b}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.2:3|Lösung a|Lösung 1.2:3a|Lösung b|Lösung 1.2:3b}}
-
===Exercise 1.2:4===
+
===Übung 1.2:4===
<div class="ovning">
<div class="ovning">
-
Simplify the following by writing each part as one fraction. The fraction should be in simplest possible form.
+
Schreibe folgende Ausdrücke als einen einzigen Bruch, so weit wie möglich gekürzt.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 67: Zeile 68:
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}}</math>
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{1}{4}-\frac{1}{5}}{\displaystyle\frac{3}{10}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 1.2:4|Solution a|Solution 1.2:4a|Solution b|Solution 1.2:4b|Solution c|Solution 1.2:4c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.2:4|Lösung a|Lösung 1.2:4a|Lösung b|Lösung 1.2:4b|Lösung c|Lösung 1.2:4c}}
-
===Exercise 1.2:5===
+
===Übung 1.2:5===
<div class="ovning">
<div class="ovning">
-
Simplify the following by writing each part as one fraction. The fraction should be in simplest possible form.
+
Schreibe folgende Ausdrücke als einen einzigen Bruch, so weit wie möglich gekürzt.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 81: Zeile 82:
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}}</math>
|width="33%"| <math>\displaystyle\frac{\displaystyle\frac{3}{10}\displaystyle-\frac{1}{5}}{\displaystyle\frac{7}{8}\displaystyle-\frac{3}{16}}</math>
|}
|}
-
</div>{{#NAVCONTENT:Answer|Answer 1.2:5|Solution a|Solution 1.2:5a|Solution b|Solution 1.2:5b|Solution c|Solution 1.2:5c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.2:5|Lösung a|Lösung 1.2:5a|Lösung b|Lösung 1.2:5b|Lösung c|Lösung 1.2:5c}}
-
===Exercise 1.2:6===
+
===Übung 1.2:6===
<div class="ovning">
<div class="ovning">
-
Simplify
+
Vereinfache:
<math>\ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}</math>
<math>\ \,\displaystyle \frac{\displaystyle \frac{2}{\displaystyle 3+\frac{1}{2}}\displaystyle + \frac{\displaystyle \frac{1}{2}}{\displaystyle \frac{1}{4}\displaystyle -\frac{1}{3}}}{\displaystyle \frac{1}{2}\displaystyle - \frac{3}{\displaystyle 2-\frac{2}{7}}}</math>
-
</div>{{#NAVCONTENT:Answer|Answer 1.2:6|Solution |Solution 1.2:6}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.2:6|Lösung |Lösung 1.2:6}}
 +
 
 +
 
 +
'''Diagnostische Prüfung und Schlussprüfung'''
 +
 
 +
Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in der Student Lounge.

Aktuelle Version

       Theorie          Übungen      


Übung 1.2:1

Schreibe folgende Ausdrücke als einen einzigen Bruch und überprüfe Deine Lösungen anschließend, indem Du auf "Antwort" klickst.

a) 47+711 b) 7251 c) 6152
d) 31+41+51 e) 78+4334


Übung 1.2:2

Bestimme den kleinsten gemeinsamen Nenner von:

a) 61+110 b) 4181
c) 112114 d) 245+175


Übung 1.2:3

Berechne folgende Ausdrücke mit Hilfe des kleinsten gemeinsamen Nenners.

a) 320+750110 b) 124+140116


Übung 1.2:4

Schreibe folgende Ausdrücke als einen einzigen Bruch, so weit wie möglich gekürzt.

a) 53710 b) 8372 c) 3104151


Übung 1.2:5

Schreibe folgende Ausdrücke als einen einzigen Bruch, so weit wie möglich gekürzt.

a) 271115 b) 312121+31 c) 8731631051


Übung 1.2:6

Vereinfache:  21327223+21+214131


Diagnostische Prüfung und Schlussprüfung

Nachdem Du mit der Theorie und den Übungen fertig bist, sollst Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in der Student Lounge.