Lösung 4.4:3c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 4.4:3c moved to Solution 4.4:3c: Robot: moved page)
Aktuelle Version (13:06, 25. Aug. 2009) (bearbeiten) (rückgängig)
(Replaced figure with metapost figure)
 
(Der Versionsvergleich bezieht 6 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Falls wir <math>x + 40^{\circ}</math> als unbekannte Variable betrachten, haben wir eine einfache trigonometrische Gleichung wie vorher. Wir sehen, dass es im Intervall <math>0^{\circ}\le x+40^{\circ}\le 360^{\circ}</math> zwei Lösungen gibt, nämlich <math>x+40^{\circ} = 65^{\circ}</math> und die symmetrische Lösung <math>x + 40^{\circ} = 180^{\circ} - 65^{\circ} = 115^{\circ}\,</math>.
-
<center> [[Image:4_4_3c.gif]] </center>
+
-
{{NAVCONTENT_STOP}}
+
 +
<center>{{:4.4.3c - Solution - Two unit circles with angles 65° and 115°, respectively}}</center>
-
[[Image:4_4_3_c.gif|center]]
+
Die allgemeine Lösung ist damit
 +
 
 +
{{Abgesetzte Formel||<math>x + 40^{\circ} = 65^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x + 40^{\circ} = 115^{\circ} + n\cdot 360^{\circ}</math>}}
 +
 
 +
Also erhalten wir die Lösungen
 +
 
 +
{{Abgesetzte Formel||<math>x = 25^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x=75^{\circ} + n\cdot 360^{\circ}\,\textrm{.}</math>}}

Aktuelle Version

Falls wir \displaystyle x + 40^{\circ} als unbekannte Variable betrachten, haben wir eine einfache trigonometrische Gleichung wie vorher. Wir sehen, dass es im Intervall \displaystyle 0^{\circ}\le x+40^{\circ}\le 360^{\circ} zwei Lösungen gibt, nämlich \displaystyle x+40^{\circ} = 65^{\circ} und die symmetrische Lösung \displaystyle x + 40^{\circ} = 180^{\circ} - 65^{\circ} = 115^{\circ}\,.

[Image]

Die allgemeine Lösung ist damit

\displaystyle x + 40^{\circ} = 65^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x + 40^{\circ} = 115^{\circ} + n\cdot 360^{\circ}

Also erhalten wir die Lösungen

\displaystyle x = 25^{\circ} + n\cdot 360^{\circ}\qquad\text{und}\qquad x=75^{\circ} + n\cdot 360^{\circ}\,\textrm{.}