Lösung 4.4:1b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
(Replaced figure with metapost figure) |
||
(Der Versionsvergleich bezieht 6 dazwischen liegende Versionen mit ein.) | |||
Zeile 1: | Zeile 1: | ||
- | + | Wir wissen von vorhin, dass <math>v = \pi/3</math> im ersten Quadranten eine Lösung hat. Zeichnen wir den Einheitskreis, sehen wir, dass aufgrund der Symmetrie der negative Winkel <math>v=\pi/3</math> dieselbe ''x''-Koordinate hat. | |
- | < | + | |
- | + | ||
+ | <center>{{:4.4.1b - Solution - The unit circle with angles π/3 and 2π - π/3, respectively}}</center> | ||
- | + | Also gibt es zwei Winkel, <math>v=\pi/3</math> und <math>v=2\pi - \pi/3 = 5\pi/3</math>, deren Kosinus 1/2 ist. |
Aktuelle Version
Wir wissen von vorhin, dass \displaystyle v = \pi/3 im ersten Quadranten eine Lösung hat. Zeichnen wir den Einheitskreis, sehen wir, dass aufgrund der Symmetrie der negative Winkel \displaystyle v=\pi/3 dieselbe x-Koordinate hat.
Also gibt es zwei Winkel, \displaystyle v=\pi/3 und \displaystyle v=2\pi - \pi/3 = 5\pi/3, deren Kosinus 1/2 ist.