Solution 2.3:6c
From Förberedande kurs i matematik 1
If we complete the square of the expression, we have that
\displaystyle \begin{align}
& x^{2}-5x+7=\left( x-\frac{5}{2} \right)^{2}-\left( \frac{5}{2} \right)^{2}+7 \\ 
& =\left( x-\frac{5}{2} \right)^{2}-\frac{25}{4}+\frac{28}{4}=\left( x-\frac{5}{2} \right)^{2}+\frac{3}{4} \\ 
\end{align}
and because 
\displaystyle \left( x-\frac{5}{2} \right)^{2}
is a quadratic, this term is at least equal to zero when 
\displaystyle x={5}/{2}\;. This shows that the polynomial's smallest value is 
\displaystyle \frac{3}{4}.
