Solution 1.3:6e
From Förberedande kurs i matematik 1
Both \displaystyle 125 and \displaystyle 625 can be written as powers of \displaystyle 5,
\displaystyle \begin{align}
& 125=5\centerdot 5=5\centerdot 5\centerdot 5=5^{3} \\ 
&  \\ 
& 625=5\centerdot 125=5\centerdot 5^{3}=5^{4} \\ 
&  \\ 
\end{align}
and this means that
\displaystyle \begin{align}
& 125^{\frac{1}{2}}=\left( 5^{3} \right)^{\frac{1}{2}}=5^{3\centerdot \frac{1}{2}}=5^{\frac{3}{2}} \\ 
&  \\ 
& 625=\left( 5^{4} \right)^{\frac{1}{3}}=5^{4\centerdot \frac{1}{3}}=5^{\frac{4}{3}} \\ 
\end{align}
From this, we see that 
\displaystyle 125^{\frac{1}{2}}>625^{\frac{1}{3}}, since the exponent 
\displaystyle {3}/{2}\;
is bigger than 
\displaystyle {4}/{3}\;
and the base 
\displaystyle 5
is bigger than 
\displaystyle 1.
