Answer 5.1:3
From Förberedande kurs i matematik 1
(Difference between revisions)
(New page: {| width="100%" cellspacing="10px" |a) |width="50%" | <math>x^3y^2\left(\displaystyle \frac{1}{y} - \frac{1}{xy}+1\right)</math> |b) |width="50%" | <math>\left(x-y+\displ...) |
|||
Line 1: | Line 1: | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width=" | + | |width="100%" | \dfrac{x+1}{x^2-1} = \dfrac{1}{x-1} |
+ | |- | ||
|b) | |b) | ||
- | |width=" | + | |width="100%" | \left(\dfrac{5}{x}-1\right)(1-x) |
|- | |- | ||
|c) | |c) | ||
- | || | + | |width="100%" | \dfrac{\frac{1}{2}}{\frac{1}{3}+\frac{1}{4}} |
+ | |- | ||
|d) | |d) | ||
- | || | + | |width="100%" | \dfrac{1}{1+\dfrac{1}{1+x}} |
|} | |} |
Current revision
a) | \dfrac{x+1}{x^2-1} = \dfrac{1}{x-1} |
b) | \left(\dfrac{5}{x}-1\right)(1-x) |
c) | \dfrac{\frac{1}{2}}{\frac{1}{3}+\frac{1}{4}} |
d) | \dfrac{1}{1+\dfrac{1}{1+x}} |