5. Exercises
From Förberedande kurs i matematik 1
(Difference between revisions)
Line 59: | Line 59: | ||
|} | |} | ||
</div>{{#NAVCONTENT:Answer|Answer 5.1:3}} | </div>{{#NAVCONTENT:Answer|Answer 5.1:3}} | ||
+ | |||
+ | |||
+ | ===Exercise 5:4=== | ||
+ | <div class="ovning"> | ||
+ | Criticize the following excerpts from solutions made by students | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="100%" | [[Image:ex5_1_4a_orig_final.png]] | ||
+ | |- | ||
+ | |b) | ||
+ | |width="100%" | [[Image:ex5_1_4b_orig_final.png]] | ||
+ | |- | ||
+ | |c) | ||
+ | |width="100%" | [[Image:ex5_1_4c_orig_final.png]] | ||
+ | |- | ||
+ | |d) | ||
+ | |width="100%" | [[Image:ex5_1_4d_orig_final.png]] | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Solution a|Solution 5.1:4a|Solution b|Solution 5.1:4b|Solution c|Solution 5.1:4c|Solution d|Solution 5.1:4d}} | ||
+ | |||
+ | |||
+ | ===Exercise 5:5=== | ||
+ | <div class="ovning"> | ||
+ | Criticize the following excerpts from solutions made by students | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="100%" | [[Image:ex5_1_5a_orig_final.png]] | ||
+ | |- | ||
+ | |b) | ||
+ | |width="100%" | [[Image:ex5_1_5b_orig_final.png]] | ||
+ | |- | ||
+ | |c) | ||
+ | |width="100%" | [[Image:ex5_1_5c_orig_final.png]] | ||
+ | |- | ||
+ | |d) | ||
+ | |width="100%" | [[Image:ex5_1_5d_orig_final.png]] | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Solution a|Solution 5.1:5a|Solution b|Solution 5.1:5b|Solution c|Solution 5.1:5c|Solution d|Solution 5.1:5d}} |
Revision as of 15:01, 26 January 2009
Theory | Exercises |
Exercise 5:1
Write the formulas in TeX , you can test your text in the editor to your individual assignment.
a) | \displaystyle \displaystyle\frac{a+b}{d-c} | b) | \displaystyle \sqrt{3} |
c) | \displaystyle 4x^2 - x | d) | \displaystyle \sin^2 x + \cos x |
Answer
Exercise 5:2
Write the formulas in TeX
a) | \displaystyle \cos{v} = \cos{\displaystyle \frac{3\pi}{2}} | b) | \displaystyle \tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u} |
c) | \displaystyle \left\{\eqalign{
x&=n\pi\cr x&=\displaystyle \frac{\pi}{4}+\displaystyle \frac{n\pi}{2} }\right. | d) | \displaystyle \bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\ \sqrt{2 + \sqrt{4}} |
Answer
Exercise 5:3
Write the formulas in TeX
a) | \displaystyle x^3y^2\left(\displaystyle \frac{1}{y} - \frac{1}{xy}+1\right) | b) | \displaystyle \left(x-y+\displaystyle\frac{x^2}{y-x}\right) \left(\displaystyle\frac{y}{2x-y}-1\right) |
c) | \displaystyle \displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2} | d) | \displaystyle \displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}} |
Answer
Exercise 5:4
Criticize the following excerpts from solutions made by students
a) | Image:Ex5 1 4a orig final.png |
b) | Image:Ex5 1 4b orig final.png |
c) | Image:Ex5 1 4c orig final.png |
d) | Image:Ex5 1 4d orig final.png |
Solution a
Solution b
Solution c
Solution d
Exercise 5:5
Criticize the following excerpts from solutions made by students
a) | Image:Ex5 1 5a orig final.png |
b) | Image:Ex5 1 5b orig final.png |
c) | Image:Ex5 1 5c orig final.png |
d) | Image:Ex5 1 5d orig final.png |
Solution a
Solution b
Solution c
Solution d