Answer 5.1:2

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Line 6: Line 6:
|-
|-
|c)
|c)
-
|| &lt;math&gt;\left\{\eqalign{ <br/>
+
|| &lt;math&gt;\left\{\eqalign{
-
x&=n\pi\cr <br/>
+
x&=n\pi\cr
-
x&=\displaystyle \frac{\pi}{4}+\displaystyle \frac{n\pi}{2} <br/>
+
x&=\displaystyle \frac{\pi}{4}+\displaystyle \frac{n\pi}{2}
}\right.&lt;/math&gt;
}\right.&lt;/math&gt;
|d)
|d)
|| &lt;math&gt; \bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\ \sqrt{2 + \sqrt{4}}&lt;/math&gt;
|| &lt;math&gt; \bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\ \sqrt{2 + \sqrt{4}}&lt;/math&gt;
|}
|}

Revision as of 13:16, 22 January 2009

a) <math>\cos{v} = \cos{\displaystyle \frac{3\pi}{2}}</math> b) <math>\tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}</math>
c) <math>\left\{\eqalign{

x&=n\pi\cr x&=\displaystyle \frac{\pi}{4}+\displaystyle \frac{n\pi}{2} }\right.</math>

d) <math> \bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\ \sqrt{2 + \sqrt{4}}</math>