Answer 5.1:2
From Förberedande kurs i matematik 1
(Difference between revisions)
(New page: {| width="100%" cellspacing="10px" |a) |width="50%" | \cos{v} = \cos{\displaystyle \frac{3\pi}{2}} |b) |width="50%" | \tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u} |- |c) || \left\{...) |
|||
Line 1: | Line 1: | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="50%" | \cos{v} = \cos{\displaystyle \frac{3\pi}{2}} | + | |width="50%" | <math>\cos{v} = \cos{\displaystyle \frac{3\pi}{2}}</math> |
|b) | |b) | ||
- | |width="50%" | \tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u} | + | |width="50%" | <math>\tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}</math> |
|- | |- | ||
|c) | |c) | ||
- | || \left\{\eqalign{ | + | || <math>\left\{\eqalign{ <br/> |
- | x&=n\pi\cr | + | x&=n\pi\cr <br/> |
- | x&=\displaystyle \frac{\pi}{4}+\displaystyle \frac{n\pi}{2} | + | x&=\displaystyle \frac{\pi}{4}+\displaystyle \frac{n\pi}{2} <br/> |
- | }\right. | + | }\right.</math> |
|d) | |d) | ||
|| <math> \bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\ \sqrt{2 + \sqrt{4}}</math> | || <math> \bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\ \sqrt{2 + \sqrt{4}}</math> | ||
|} | |} |
Revision as of 13:12, 22 January 2009
a) | <math>\cos{v} = \cos{\displaystyle \frac{3\pi}{2}}</math> | b) | <math>\tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}</math> |
c) | <math>\left\{\eqalign{ x&=n\pi\cr | d) | <math> \bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\ \sqrt{2 + \sqrt{4}}</math> |