3.1 Roots
From Förberedande kurs i matematik 1
(Edited for UK idiom, notation and terminology: section on surds added.) |
|||
Line 9: | Line 9: | ||
{{Info| | {{Info| | ||
'''Contents:''' | '''Contents:''' | ||
- | *Square roots and ''n | + | *Square roots and ''n''th roots |
*Manipulating roots | *Manipulating roots | ||
}} | }} | ||
Line 22: | Line 22: | ||
*How to manipulate roots in the simplification of expressions. | *How to manipulate roots in the simplification of expressions. | ||
*To recognise when the methods of manipulating roots are valid. | *To recognise when the methods of manipulating roots are valid. | ||
- | *How to simplify expressions containing | + | *How to simplify expressions containing square roots in the denominator. |
- | *When the ''n | + | *When the ''n''th root of a negative number is defined (''n'' odd). |
}} | }} | ||
Line 31: | Line 31: | ||
The well-known symbol <math>\sqrt{a}</math>, the square root of <math>a</math>, is used to describe the number that when multiplied by itself gives <math>a</math>. However, one has to be a little more precise in defining this symbol. | The well-known symbol <math>\sqrt{a}</math>, the square root of <math>a</math>, is used to describe the number that when multiplied by itself gives <math>a</math>. However, one has to be a little more precise in defining this symbol. | ||
- | The equation <math>x^2 = 4</math> has two solutions <math>x = 2</math> and <math>x = -2</math>, since both <math>2\cdot 2 = 4</math> and <math>(-2)\cdot(-2) = 4</math>. It would then be logical to suppose that <math>\sqrt{4}</math> can be either <math>-2</math> or <math>2</math>, i.e. <math>\sqrt{4}= \pm 2</math>, but <math>\sqrt{4}</math> only denotes the positive number <math>2</math>. | + | The equation <math>x^2 = 4</math> has two solutions <math>x = 2</math> and <math>x = -2</math>, since both <math>2\cdot 2 = 4</math> and <math>(-2)\cdot(-2) = 4</math>. It would then be logical to suppose that <math>\sqrt{4}</math> can be either <math>-2</math> or <math>2</math>, i.e. <math>\sqrt{4}= \pm 2</math>, but by convention, <math>\sqrt{4}</math> only denotes the positive number <math>2</math>. |
<div class="regel"> | <div class="regel"> | ||
- | The square root <math>\sqrt{a}</math> means '''the non-negative number''' that multiplied by | + | The square root <math>\sqrt{a}</math> means '''the non-negative number''' that, when multiplied by |
- | itself gives <math>a,</math> | + | itself, gives <math>a,</math>; that is, the non-negative solution of the equation <math>x^2 = a</math>. |
The square root of <math>a</math> can also be written as <math>a^{1/2}</math>. | The square root of <math>a</math> can also be written as <math>a^{1/2}</math>. | ||
Line 56: | Line 56: | ||
\cdot 1{_.}4142 \approx 2</math> and <math>1{_.}4142</math> is positive. </li> | \cdot 1{_.}4142 \approx 2</math> and <math>1{_.}4142</math> is positive. </li> | ||
<li> The equation <math>x^2=2</math> has the solutions <math>x=\sqrt{2} | <li> The equation <math>x^2=2</math> has the solutions <math>x=\sqrt{2} | ||
- | \approx 1{_.} | + | \approx 1{_.}4142</math> and <math>x = -\sqrt{2} \approx -1{_.}4142</math>.</li> |
<li><math>\sqrt{-4}\quad</math> is not defined, since there is no real number <math>x</math> that satisfies <math>x^2=-4</math>.</li> | <li><math>\sqrt{-4}\quad</math> is not defined, since there is no real number <math>x</math> that satisfies <math>x^2=-4</math>.</li> | ||
<li><math>\sqrt{(-7)^2} = 7 \quad</math> because <math> \sqrt{(-7)^2} | <li><math>\sqrt{(-7)^2} = 7 \quad</math> because <math> \sqrt{(-7)^2} | ||
Line 63: | Line 63: | ||
</div> | </div> | ||
- | It is useful to know how square roots behave | + | It is useful to know how square roots behave in calculations. As <math>\sqrt{a} = a^{1/2}</math>, we can handle expressions involving roots as we would expressions involving exponents. For example, we have |
- | {{Displayed math||<math>\sqrt{9\ | + | {{Displayed math||<math>\sqrt{9\times 4} |
- | = (9\ | + | = (9\times 4)^{1/2} |
- | = 9^{1/2}\ | + | = 9^{1/2}\times 4^{1/2} |
- | = \sqrt{9}\ | + | = \sqrt{9}\times \sqrt{4}\mbox{.}</math>}} |
- | In this way we obtain the following rules for | + | In this way we obtain the following rules for square roots. |
<div class="regel"> | <div class="regel"> | ||
For all real numbers <math> a, b \ge 0:</math> | For all real numbers <math> a, b \ge 0:</math> | ||
{{Displayed math||<math> \begin{align*} | {{Displayed math||<math> \begin{align*} | ||
- | \sqrt{ab} &= \sqrt{\vphantom{b}a}\ | + | \sqrt{ab} &= \sqrt{\vphantom{b}a}\times \sqrt{b}\\[4pt] |
\sqrt{\frac{a}{b}} &= \frac{\sqrt{a}}{\sqrt{b}}, \quad\ \mathrm{for}\ b\neq0\\[4pt] | \sqrt{\frac{a}{b}} &= \frac{\sqrt{a}}{\sqrt{b}}, \quad\ \mathrm{for}\ b\neq0\\[4pt] | ||
a\sqrt{b} &= \sqrt{a^2b} | a\sqrt{b} &= \sqrt{a^2b} | ||
Line 83: | Line 83: | ||
<ol type="a"> | <ol type="a"> | ||
- | <li><math>\sqrt{64\ | + | <li><math>\sqrt{64\times 81} = \sqrt{64}\times \sqrt{81} = 8\times 9 |
= 72</math></li> | = 72</math></li> | ||
<li><math>\sqrt{\frac{9}{25}} = \frac{\sqrt{9}}{\sqrt{25}} | <li><math>\sqrt{\frac{9}{25}} = \frac{\sqrt{9}}{\sqrt{25}} | ||
= \frac{3}{5}</math></li> | = \frac{3}{5}</math></li> | ||
- | <li><math>\sqrt{18} \ | + | <li><math>\sqrt{18} \times \sqrt{2} = \sqrt{18 \times 2} = \sqrt{36} |
= 6</math></li> | = 6</math></li> | ||
<li><math>\frac{\sqrt{75}}{\sqrt{3}} = \sqrt{\frac{75}{3}} | <li><math>\frac{\sqrt{75}}{\sqrt{3}} = \sqrt{\frac{75}{3}} | ||
= \sqrt{25} = 5</math></li> | = \sqrt{25} = 5</math></li> | ||
- | <li><math>\sqrt{12} = \sqrt{ 4 \ | + | <li><math>\sqrt{12} = \sqrt{ 4 \times 3 } = \sqrt{4} \times \sqrt{3} |
= 2\sqrt{3}</math></li> | = 2\sqrt{3}</math></li> | ||
</ol> | </ol> | ||
Line 98: | Line 98: | ||
Note that the above calculations assume that <math>a</math> and <math>b \ge 0</math>. If <math>a</math> and <math>b</math> are negative (< 0) then <math>\sqrt{a}</math> and <math>\sqrt{b}</math> are not defined as real numbers. It is tempting to write , for example, | Note that the above calculations assume that <math>a</math> and <math>b \ge 0</math>. If <math>a</math> and <math>b</math> are negative (< 0) then <math>\sqrt{a}</math> and <math>\sqrt{b}</math> are not defined as real numbers. It is tempting to write , for example, | ||
- | {{Displayed math||<math>-1 = \sqrt{-1} \ | + | {{Displayed math||<math>-1 = \sqrt{-1} \times \sqrt{-1} = \sqrt{ (-1) \times (-1) } = \sqrt{1} = 1</math>}} |
- | but something here cannot be right. The explanation is that <math> \sqrt{-1} </math> is not a real number, which means the laws of roots discussed above may not be used. | + | but something here cannot be right. The explanation is that <math> \sqrt{-1} </math> is not a real number, which means the laws of roots discussed above may not be used. |
Line 112: | Line 112: | ||
<ol type="a"> | <ol type="a"> | ||
<li><math>\sqrt[\scriptstyle 3]{8} = 2 \quad</math> as <math>2 | <li><math>\sqrt[\scriptstyle 3]{8} = 2 \quad</math> as <math>2 | ||
- | \ | + | \times 2 \times 2=8</math>.</li> |
<li><math>\sqrt[\scriptstyle 3]{0{_.}027} = 0{_.}3 | <li><math>\sqrt[\scriptstyle 3]{0{_.}027} = 0{_.}3 | ||
- | \quad</math> since <math>0{_.}3 \ | + | \quad</math> since <math>0{_.}3 \times 0{_.}3 \times 0{_.}3 |
= 0{_.}027</math>.</li> | = 0{_.}027</math>.</li> | ||
<li><math>\sqrt[\scriptstyle 3]{-8} = -2 \quad</math> because <math>(-2) | <li><math>\sqrt[\scriptstyle 3]{-8} = -2 \quad</math> because <math>(-2) | ||
- | \ | + | \times (-2) \times (-2)= -8</math>. |
</ol> | </ol> | ||
</div> | </div> | ||
Line 123: | Line 123: | ||
Note that, unlike square roots, cube roots are also defined for negative numbers. | Note that, unlike square roots, cube roots are also defined for negative numbers. | ||
- | For any positive integer <math>n</math> one can define the <math>n</math> | + | For any positive integer <math>n</math> one can define the <math>n</math>th root of a number <math>a</math>: |
* if <math>n</math> is even and <math>a\ge0</math> then <math>\sqrt[\scriptstyle n]{a}</math> is the non-negative number that when multiplied by itself <math>n</math> times gives <math>a</math>, | * if <math>n</math> is even and <math>a\ge0</math> then <math>\sqrt[\scriptstyle n]{a}</math> is the non-negative number that when multiplied by itself <math>n</math> times gives <math>a</math>, | ||
Line 135: | Line 135: | ||
<ol type="a"> | <ol type="a"> | ||
<li><math>\sqrt[\scriptstyle 4]{625} = 5\quad</math> since <math>5 | <li><math>\sqrt[\scriptstyle 4]{625} = 5\quad</math> since <math>5 | ||
- | \ | + | \times 5 \times 5 \times 5 = 625</math>.</li> |
<li><math>\sqrt[\scriptstyle 5]{-243} = -3\quad</math> because <math>(-3) | <li><math>\sqrt[\scriptstyle 5]{-243} = -3\quad</math> because <math>(-3) | ||
- | \ | + | \times (-3) \times (-3) \times (-3) \times (-3) = -243</math>.</li> |
<li><math>\sqrt[\scriptstyle 6]{-17}\quad</math> is not defined as <math>6</math> is even and <math>-17</math> is a negative number. </li> | <li><math>\sqrt[\scriptstyle 6]{-17}\quad</math> is not defined as <math>6</math> is even and <math>-17</math> is a negative number. </li> | ||
</ol> | </ol> | ||
</div> | </div> | ||
- | For <math>n</math> | + | For <math>n</math>th roots the same rules apply as for square roots if <math>a, \, b \ge 0</math>. Note that if <math>n</math> is odd these methods apply even for negative <math>a</math> and <math>b</math>, that is, for all real numbers <math>a</math> and <math>b</math>. |
<div class="regel"> | <div class="regel"> | ||
Line 155: | Line 155: | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
</div> | </div> | ||
+ | |||
+ | == Surds == | ||
+ | |||
+ | Some square roots, such as <math>\sqrt9</math>, can be expressed as exact numbers. Others, like <math>\sqrt2</math>, cannot, because they are irrational and therefore their decimal forms go on forever without any repeating patterns. | ||
+ | |||
+ | Of course, numbers like <math>\sqrt2</math> can be expressed ''approximately'' as decimals, but in fact it is often preferable to leave expressions like <math>\sqrt2</math> unevaluated, at least until the end of a calculation; that way, there is no loss of accuracy along the way. | ||
+ | |||
+ | Expressions containing unevaluated irrational square roots, or more generally <math>n</math> roots, are often called surds. | ||
== Simplification of expressions containing roots == | == Simplification of expressions containing roots == | ||
- | Often one can significantly simplify expressions containing roots by using the rules described above. As | + | Often one can significantly simplify surds - expressions containing roots - by using the rules described above. As with indices, it is desirable to reduce expressions into "small" roots. For example, it is a good idea to do the following |
{{Displayed math||<math>\sqrt{8} | {{Displayed math||<math>\sqrt{8} | ||
- | = \sqrt{4\ | + | = \sqrt{4\times2} |
- | = \sqrt{4} \ | + | = \sqrt{4} \times \sqrt{2} |
= 2\sqrt{2}</math>}} | = 2\sqrt{2}</math>}} | ||
- | because it | + | because it may help with later simplification, as we see here |
{{Displayed math||<math>\frac{\sqrt{8}}{2} | {{Displayed math||<math>\frac{\sqrt{8}}{2} | ||
Line 172: | Line 180: | ||
= \sqrt{2}\mbox{.}</math>}} | = \sqrt{2}\mbox{.}</math>}} | ||
- | By rewriting | + | By rewriting surds in terms of "small" roots one can also sum roots of "the same kind", e.g. |
{{Displayed math||<math>\sqrt{8} + \sqrt{2} | {{Displayed math||<math>\sqrt{8} + \sqrt{2} | ||
Line 184: | Line 192: | ||
<ol type="a"> | <ol type="a"> | ||
<li><math>\frac{\sqrt{8}}{\sqrt{18}} | <li><math>\frac{\sqrt{8}}{\sqrt{18}} | ||
- | = \frac{\sqrt{2 \ | + | = \frac{\sqrt{2 \times 4}}{\sqrt{2 \times 9}} |
- | = \frac{\sqrt{2 \ | + | = \frac{\sqrt{2 \times 2 \times 2}}{\sqrt{2 \times 3 \times 3}} |
- | = \frac{\sqrt{2 \ | + | = \frac{\sqrt{2 \times 2^2}}{\sqrt{2 \times 3^2}} |
= \frac{2\sqrt{2}}{3\sqrt{2}} | = \frac{2\sqrt{2}}{3\sqrt{2}} | ||
= \frac{2}{3}</math></li> | = \frac{2}{3}</math></li> | ||
<li><math>\frac{\sqrt{72}}{6} | <li><math>\frac{\sqrt{72}}{6} | ||
- | = \frac{\sqrt{8 \ | + | = \frac{\sqrt{8 \times 9}}{ 2 \times 3} |
- | = \frac{\sqrt{2 \ | + | = \frac{\sqrt{2 \times 2 \times 2 \times 3 \times 3}}{ 2 \times 3} |
- | = \frac{\sqrt{2^2 \ | + | = \frac{\sqrt{2^2 \times 3^2 \times 2}}{ 2 \times 3} |
- | = \frac{2 \ | + | = \frac{2 \times 3\sqrt{2}}{2 \times 3} |
= \sqrt{2}</math></li> | = \sqrt{2}</math></li> | ||
<li><math>\sqrt{45} + \sqrt{20} | <li><math>\sqrt{45} + \sqrt{20} | ||
- | = \sqrt{9\ | + | = \sqrt{9\times5} + \sqrt{4\times5} |
- | = \sqrt{3^2\ | + | = \sqrt{3^2\times5} + \sqrt{2^2\times5} |
= 3\sqrt{5} + 2\sqrt{5}\vphantom{\bigl(}</math><br/> | = 3\sqrt{5} + 2\sqrt{5}\vphantom{\bigl(}</math><br/> | ||
<math>\phantom{\sqrt{45} + \sqrt{20}\vphantom{\bigl(}}{} | <math>\phantom{\sqrt{45} + \sqrt{20}\vphantom{\bigl(}}{} | ||
Line 203: | Line 211: | ||
= 5\sqrt{5}</math></li> | = 5\sqrt{5}</math></li> | ||
<li><math>\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(} | <li><math>\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(} | ||
- | = \sqrt{5 \ | + | = \sqrt{5 \times 10} + 2\sqrt{3} -\sqrt{2 \times 16} |
- | + \sqrt{3 \ | + | + \sqrt{3 \times 9}</math><br/> |
<math>\phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} | <math>\phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} | ||
- | = \sqrt{5 \ | + | = \sqrt{5 \times 2 \times 5} + 2\sqrt{3} -\sqrt{2 \times 4 \times 4} |
- | + \sqrt{3 \ | + | + \sqrt{3 \times 3 \times 3}\vphantom{a^{b^c}}</math><br> |
<math>\phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} | <math>\phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} | ||
- | = \sqrt{5^2 \ | + | = \sqrt{5^2 \times 2 } + 2\sqrt{3} -\sqrt{2^2 \times 2^2 \times 2} |
- | + \sqrt{3 \ | + | + \sqrt{3 \times 3^2}\vphantom{a^{\textstyle b^{\textstyle c}}}</math><br> |
<math>\phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} | <math>\phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} | ||
- | = 5\sqrt{2} +2\sqrt{3} - 2 \ | + | = 5\sqrt{2} +2\sqrt{3} - 2 \times 2\sqrt{2} |
+ 3\sqrt{3}\vphantom{a^{\textstyle b^{\textstyle c}}}</math><br> | + 3\sqrt{3}\vphantom{a^{\textstyle b^{\textstyle c}}}</math><br> | ||
<math>\phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} | <math>\phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} | ||
Line 220: | Line 228: | ||
= \sqrt{2} | = \sqrt{2} | ||
+ 5\sqrt{3}\vphantom{a^{\textstyle b^{\textstyle c}}}</math></li> | + 5\sqrt{3}\vphantom{a^{\textstyle b^{\textstyle c}}}</math></li> | ||
- | <li><math>\frac{ 2\ | + | <li><math>\frac{ 2\times\sqrt[\scriptstyle3]{3} }{ \sqrt[\scriptstyle3]{12} } |
- | = \frac{ 2\ | + | = \frac{ 2\times\sqrt[\scriptstyle3]{3} }{ |
- | \sqrt[\scriptstyle3]{3 \ | + | \sqrt[\scriptstyle3]{3 \times 4} } |
- | = \frac{ 2\ | + | = \frac{ 2\times\sqrt[\scriptstyle3]{3} }{ \sqrt[\scriptstyle3]{3} |
- | \ | + | \times \sqrt[\scriptstyle3]{4} } |
= \frac{ 2 }{ \sqrt[\scriptstyle3]{4} } | = \frac{ 2 }{ \sqrt[\scriptstyle3]{4} } | ||
- | = \frac{ 2 }{ \sqrt[\scriptstyle3]{2 \ | + | = \frac{ 2 }{ \sqrt[\scriptstyle3]{2 \times 2} } |
- | = \frac{ 2 }{ \sqrt[\scriptstyle3]{2} \ | + | = \frac{ 2 }{ \sqrt[\scriptstyle3]{2} \times \sqrt[\scriptstyle3]{2} } |
- | \ | + | \times \displaystyle \frac{\sqrt[\scriptstyle3]{2}}{ |
\sqrt[\scriptstyle3]{2}} | \sqrt[\scriptstyle3]{2}} | ||
- | = \frac{ 2\ | + | = \frac{ 2\times\sqrt[\scriptstyle3]{2} }{ 2 } |
= \sqrt[\scriptstyle3]{2}</math></li> | = \sqrt[\scriptstyle3]{2}</math></li> | ||
<li><math>(\sqrt{3} + \sqrt{2}\,)(\sqrt{3} - \sqrt{2}\,) | <li><math>(\sqrt{3} + \sqrt{2}\,)(\sqrt{3} - \sqrt{2}\,) | ||
Line 239: | Line 247: | ||
- | == | + | == Rationalising the denominator == |
- | When roots appear in a rational expression it is often useful to write the expression in a form which does not contain roots in the denominator. This is because it is difficult to divide by irrational numbers | + | When roots appear in a rational expression it is often useful to write the expression in a form which does not contain any roots in the denominator. This is because it is difficult to divide by irrational numbers by hand. In the example below, multiplying by <math> 1=\frac{\sqrt{2}}{\sqrt{2}} </math>, one obtains |
{{Displayed math||<math>\frac{1}{\sqrt{2}} | {{Displayed math||<math>\frac{1}{\sqrt{2}} | ||
- | = \frac{1\ | + | = \frac{1\times\sqrt{2}}{\sqrt{2}\times\sqrt{2}} |
= \frac{\sqrt{2}}{2}</math>}} | = \frac{\sqrt{2}}{2}</math>}} | ||
- | which | + | which is usually preferable. This is called rationalising the denominator. |
- | In | + | In slightly more complicated cases, we can use the difference of two squares, <math>(a+b)(a-b) = a^2 – b^2</math>, to eliminate the root from the denominator. The trick is this: if the denominator is <math>a+b\sqrt c</math>, then we multiply the numerator and denominator by <math>a-b\sqrt c</math>. For example, |
{{Displayed math||<math>\begin{align*} | {{Displayed math||<math>\begin{align*} | ||
\frac{\sqrt{3}}{\sqrt{2}+1} | \frac{\sqrt{3}}{\sqrt{2}+1} | ||
- | &= \frac{\sqrt{3}}{\sqrt{2}+1} \ | + | &= \frac{\sqrt{3}}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} |
= \frac{\sqrt{3}\,(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}\\[4pt] | = \frac{\sqrt{3}\,(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}\\[4pt] | ||
- | &= \frac{\sqrt{3}\ | + | &= \frac{\sqrt{3}\times\sqrt{2} - \sqrt{3}\times1}{(\sqrt{2}\,)^2 - 1^2 } |
- | = \frac{\sqrt{3 \ | + | = \frac{\sqrt{3 \times 2} - \sqrt{3}}{ 2 - 1 } |
= \frac{\sqrt{6} - \sqrt{3}}{ 1 } | = \frac{\sqrt{6} - \sqrt{3}}{ 1 } | ||
= \sqrt{6} - \sqrt{3}\mbox{.} | = \sqrt{6} - \sqrt{3}\mbox{.} | ||
Line 266: | Line 274: | ||
<ol type="a"> | <ol type="a"> | ||
<li><math>\frac{10\sqrt{3}}{\sqrt{5}} | <li><math>\frac{10\sqrt{3}}{\sqrt{5}} | ||
- | = \frac{10\sqrt{3}\ | + | = \frac{10\sqrt{3}\times\sqrt{5}}{\sqrt{5}\times\sqrt{5}} |
= \frac{10\sqrt{15}}{5} | = \frac{10\sqrt{15}}{5} | ||
= 2\sqrt{15}</math></li> | = 2\sqrt{15}</math></li> | ||
<li><math>\frac{1+\sqrt{3}}{\sqrt{2}} | <li><math>\frac{1+\sqrt{3}}{\sqrt{2}} | ||
- | = \frac{(1+\sqrt{3})\ | + | = \frac{(1+\sqrt{3})\times\sqrt{2}}{\sqrt{2}\times\sqrt{2}} |
= \frac{\sqrt{2}+\sqrt{6}}{2}</math></li> | = \frac{\sqrt{2}+\sqrt{6}}{2}</math></li> | ||
<li><math>\frac{3}{\sqrt{2}-2} | <li><math>\frac{3}{\sqrt{2}-2} | ||
Line 283: | Line 291: | ||
-(\sqrt{3}\,)^2}\vphantom{\Biggl(}</math><br> | -(\sqrt{3}\,)^2}\vphantom{\Biggl(}</math><br> | ||
<math>\phantom{\frac{\sqrt{2}}{\sqrt{6}+\sqrt{3}}\vphantom{\Biggl(}}{} | <math>\phantom{\frac{\sqrt{2}}{\sqrt{6}+\sqrt{3}}\vphantom{\Biggl(}}{} | ||
- | = \frac{\sqrt{2}\,\sqrt{2\ | + | = \frac{\sqrt{2}\,\sqrt{2\times 3}-\sqrt{2}\,\sqrt{3}}{6-3} |
= \frac{2\sqrt{3}-\sqrt{2}\,\sqrt{3}}{3} | = \frac{2\sqrt{3}-\sqrt{2}\,\sqrt{3}}{3} | ||
= \frac{(2-\sqrt{2}\,)\sqrt{3}}{3} | = \frac{(2-\sqrt{2}\,)\sqrt{3}}{3} |
Revision as of 12:40, 2 January 2009
Theory | Exercises |
Contents:
- Square roots and nth roots
- Manipulating roots
Learning outcomes:
After this section, you will have learned:
- How to calculate the square root of some simple integers.
- That the square root of a negative number is not defined.
- That the square root of a number denotes the positive root.
- How to manipulate roots in the simplification of expressions.
- To recognise when the methods of manipulating roots are valid.
- How to simplify expressions containing square roots in the denominator.
- When the nth root of a negative number is defined (n odd).
Square roots
The well-known symbol \displaystyle \sqrt{a}, the square root of \displaystyle a, is used to describe the number that when multiplied by itself gives \displaystyle a. However, one has to be a little more precise in defining this symbol.
The equation \displaystyle x^2 = 4 has two solutions \displaystyle x = 2 and \displaystyle x = -2, since both \displaystyle 2\cdot 2 = 4 and \displaystyle (-2)\cdot(-2) = 4. It would then be logical to suppose that \displaystyle \sqrt{4} can be either \displaystyle -2 or \displaystyle 2, i.e. \displaystyle \sqrt{4}= \pm 2, but by convention, \displaystyle \sqrt{4} only denotes the positive number \displaystyle 2.
The square root \displaystyle \sqrt{a} means the non-negative number that, when multiplied by itself, gives \displaystyle a,; that is, the non-negative solution of the equation \displaystyle x^2 = a.
The square root of \displaystyle a can also be written as \displaystyle a^{1/2}.
It is therefore wrong to state that \displaystyle \sqrt{4}= \pm 2, but correct to state that the equation \displaystyle x^2 = 4 has the solution \displaystyle x = \pm 2.
Example 1
- \displaystyle \sqrt{0}=0 \quad because \displaystyle 0^2 = 0 \cdot 0 = 0 and \displaystyle 0 is not negative.
- \displaystyle \sqrt{100}=10 \quad since \displaystyle 10^2 = 10 \cdot 10 = 100 and \displaystyle 10 is a positive number.
- \displaystyle \sqrt{0_.25}=0_.5 \quad since \displaystyle 0_.5^2 = 0_.5 \cdot 0_.5 = 0_.25 and \displaystyle 0{_.}5 is positive.
- \displaystyle \sqrt{2} \approx 1{_.}4142 \quad since \displaystyle 1{_.}4142 \cdot 1{_.}4142 \approx 2 and \displaystyle 1{_.}4142 is positive.
- The equation \displaystyle x^2=2 has the solutions \displaystyle x=\sqrt{2} \approx 1{_.}4142 and \displaystyle x = -\sqrt{2} \approx -1{_.}4142.
- \displaystyle \sqrt{-4}\quad is not defined, since there is no real number \displaystyle x that satisfies \displaystyle x^2=-4.
- \displaystyle \sqrt{(-7)^2} = 7 \quad because \displaystyle \sqrt{(-7)^2} = \sqrt{(-7) \cdot (-7)} = \sqrt{49} = \sqrt{ 7 \cdot 7} = 7.
It is useful to know how square roots behave in calculations. As \displaystyle \sqrt{a} = a^{1/2}, we can handle expressions involving roots as we would expressions involving exponents. For example, we have
\displaystyle \sqrt{9\times 4}
= (9\times 4)^{1/2} = 9^{1/2}\times 4^{1/2} = \sqrt{9}\times \sqrt{4}\mbox{.} |
In this way we obtain the following rules for square roots.
For all real numbers \displaystyle a, b \ge 0:
\displaystyle \begin{align*}
\sqrt{ab} &= \sqrt{\vphantom{b}a}\times \sqrt{b}\\[4pt] \sqrt{\frac{a}{b}} &= \frac{\sqrt{a}}{\sqrt{b}}, \quad\ \mathrm{for}\ b\neq0\\[4pt] a\sqrt{b} &= \sqrt{a^2b} \end{align*} |
Example 2
- \displaystyle \sqrt{64\times 81} = \sqrt{64}\times \sqrt{81} = 8\times 9 = 72
- \displaystyle \sqrt{\frac{9}{25}} = \frac{\sqrt{9}}{\sqrt{25}} = \frac{3}{5}
- \displaystyle \sqrt{18} \times \sqrt{2} = \sqrt{18 \times 2} = \sqrt{36} = 6
- \displaystyle \frac{\sqrt{75}}{\sqrt{3}} = \sqrt{\frac{75}{3}} = \sqrt{25} = 5
- \displaystyle \sqrt{12} = \sqrt{ 4 \times 3 } = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}
Note that the above calculations assume that \displaystyle a and \displaystyle b \ge 0. If \displaystyle a and \displaystyle b are negative (< 0) then \displaystyle \sqrt{a} and \displaystyle \sqrt{b} are not defined as real numbers. It is tempting to write , for example,
\displaystyle -1 = \sqrt{-1} \times \sqrt{-1} = \sqrt{ (-1) \times (-1) } = \sqrt{1} = 1 |
but something here cannot be right. The explanation is that \displaystyle \sqrt{-1} is not a real number, which means the laws of roots discussed above may not be used.
Higher order roots
The cube root of a number \displaystyle a is defined as the number that multiplied by itself three times gives \displaystyle a, and is denoted as \displaystyle \sqrt[\scriptstyle 3]{a}.
Example 3
- \displaystyle \sqrt[\scriptstyle 3]{8} = 2 \quad as \displaystyle 2 \times 2 \times 2=8.
- \displaystyle \sqrt[\scriptstyle 3]{0{_.}027} = 0{_.}3 \quad since \displaystyle 0{_.}3 \times 0{_.}3 \times 0{_.}3 = 0{_.}027.
- \displaystyle \sqrt[\scriptstyle 3]{-8} = -2 \quad because \displaystyle (-2) \times (-2) \times (-2)= -8.
Note that, unlike square roots, cube roots are also defined for negative numbers.
For any positive integer \displaystyle n one can define the \displaystyle nth root of a number \displaystyle a:
- if \displaystyle n is even and \displaystyle a\ge0 then \displaystyle \sqrt[\scriptstyle n]{a} is the non-negative number that when multiplied by itself \displaystyle n times gives \displaystyle a,
- if \displaystyle n is odd, \displaystyle \sqrt[\scriptstyle n]{a} is the number that when multiplied by itself \displaystyle n times gives \displaystyle a.
The root \displaystyle \sqrt[\scriptstyle n]{a} can also be written as \displaystyle a^{1/n}.
Example 4
- \displaystyle \sqrt[\scriptstyle 4]{625} = 5\quad since \displaystyle 5 \times 5 \times 5 \times 5 = 625.
- \displaystyle \sqrt[\scriptstyle 5]{-243} = -3\quad because \displaystyle (-3) \times (-3) \times (-3) \times (-3) \times (-3) = -243.
- \displaystyle \sqrt[\scriptstyle 6]{-17}\quad is not defined as \displaystyle 6 is even and \displaystyle -17 is a negative number.
For \displaystyle nth roots the same rules apply as for square roots if \displaystyle a, \, b \ge 0. Note that if \displaystyle n is odd these methods apply even for negative \displaystyle a and \displaystyle b, that is, for all real numbers \displaystyle a and \displaystyle b.
\displaystyle \begin{align*}
\sqrt[\scriptstyle n]{ab} &= \sqrt[\scriptstyle n]{\vphantom{b}a}\cdot \sqrt[\scriptstyle n]{b}\\[4pt] \sqrt[\scriptstyle n]{\frac{a}{b}} &= \frac{\sqrt[\scriptstyle n]{a}}{\sqrt[\scriptstyle n]{b}}, \quad\ \mathrm{for}\ b\neq0\\[4pt] a\,\sqrt[\scriptstyle n]{b} &= \sqrt[\scriptstyle n]{a^nb} \end{align*} |
Surds
Some square roots, such as \displaystyle \sqrt9, can be expressed as exact numbers. Others, like \displaystyle \sqrt2, cannot, because they are irrational and therefore their decimal forms go on forever without any repeating patterns.
Of course, numbers like \displaystyle \sqrt2 can be expressed approximately as decimals, but in fact it is often preferable to leave expressions like \displaystyle \sqrt2 unevaluated, at least until the end of a calculation; that way, there is no loss of accuracy along the way.
Expressions containing unevaluated irrational square roots, or more generally \displaystyle n roots, are often called surds.
Simplification of expressions containing roots
Often one can significantly simplify surds - expressions containing roots - by using the rules described above. As with indices, it is desirable to reduce expressions into "small" roots. For example, it is a good idea to do the following
\displaystyle \sqrt{8}
= \sqrt{4\times2} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2} |
because it may help with later simplification, as we see here
\displaystyle \frac{\sqrt{8}}{2}
= \frac{2 \sqrt{2}}{2} = \sqrt{2}\mbox{.} |
By rewriting surds in terms of "small" roots one can also sum roots of "the same kind", e.g.
\displaystyle \sqrt{8} + \sqrt{2}
= 2\sqrt{2} + \sqrt{2} = (2+1)\sqrt{2} = 3\sqrt{2}\mbox{.} |
Example 5
- \displaystyle \frac{\sqrt{8}}{\sqrt{18}} = \frac{\sqrt{2 \times 4}}{\sqrt{2 \times 9}} = \frac{\sqrt{2 \times 2 \times 2}}{\sqrt{2 \times 3 \times 3}} = \frac{\sqrt{2 \times 2^2}}{\sqrt{2 \times 3^2}} = \frac{2\sqrt{2}}{3\sqrt{2}} = \frac{2}{3}
- \displaystyle \frac{\sqrt{72}}{6} = \frac{\sqrt{8 \times 9}}{ 2 \times 3} = \frac{\sqrt{2 \times 2 \times 2 \times 3 \times 3}}{ 2 \times 3} = \frac{\sqrt{2^2 \times 3^2 \times 2}}{ 2 \times 3} = \frac{2 \times 3\sqrt{2}}{2 \times 3} = \sqrt{2}
- \displaystyle \sqrt{45} + \sqrt{20}
= \sqrt{9\times5} + \sqrt{4\times5}
= \sqrt{3^2\times5} + \sqrt{2^2\times5}
= 3\sqrt{5} + 2\sqrt{5}\vphantom{\bigl(}
\displaystyle \phantom{\sqrt{45} + \sqrt{20}\vphantom{\bigl(}}{} = (3+2)\sqrt{5} = 5\sqrt{5} - \displaystyle \sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}
= \sqrt{5 \times 10} + 2\sqrt{3} -\sqrt{2 \times 16}
+ \sqrt{3 \times 9}
\displaystyle \phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} = \sqrt{5 \times 2 \times 5} + 2\sqrt{3} -\sqrt{2 \times 4 \times 4} + \sqrt{3 \times 3 \times 3}\vphantom{a^{b^c}}
\displaystyle \phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} = \sqrt{5^2 \times 2 } + 2\sqrt{3} -\sqrt{2^2 \times 2^2 \times 2} + \sqrt{3 \times 3^2}\vphantom{a^{\textstyle b^{\textstyle c}}}
\displaystyle \phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} = 5\sqrt{2} +2\sqrt{3} - 2 \times 2\sqrt{2} + 3\sqrt{3}\vphantom{a^{\textstyle b^{\textstyle c}}}
\displaystyle \phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} = (5-4)\sqrt{2} + (2+3)\sqrt{3}\vphantom{a^{\textstyle b^{\textstyle c}}}
\displaystyle \phantom{\sqrt{50} + 2\sqrt{3} -\sqrt{32} + \sqrt{27}\vphantom{\Bigl(}}{} = \sqrt{2} + 5\sqrt{3}\vphantom{a^{\textstyle b^{\textstyle c}}} - \displaystyle \frac{ 2\times\sqrt[\scriptstyle3]{3} }{ \sqrt[\scriptstyle3]{12} } = \frac{ 2\times\sqrt[\scriptstyle3]{3} }{ \sqrt[\scriptstyle3]{3 \times 4} } = \frac{ 2\times\sqrt[\scriptstyle3]{3} }{ \sqrt[\scriptstyle3]{3} \times \sqrt[\scriptstyle3]{4} } = \frac{ 2 }{ \sqrt[\scriptstyle3]{4} } = \frac{ 2 }{ \sqrt[\scriptstyle3]{2 \times 2} } = \frac{ 2 }{ \sqrt[\scriptstyle3]{2} \times \sqrt[\scriptstyle3]{2} } \times \displaystyle \frac{\sqrt[\scriptstyle3]{2}}{ \sqrt[\scriptstyle3]{2}} = \frac{ 2\times\sqrt[\scriptstyle3]{2} }{ 2 } = \sqrt[\scriptstyle3]{2}
- \displaystyle (\sqrt{3} + \sqrt{2}\,)(\sqrt{3} - \sqrt{2}\,) = (\sqrt{3}\,)^2-(\sqrt{2}\,)^2 = 3-2 = 1 where we have used the difference of two squares \displaystyle (a+b)(a-b) = a^2 - b^2 with \displaystyle a=\sqrt{3} and \displaystyle b=\sqrt{2}.
Rationalising the denominator
When roots appear in a rational expression it is often useful to write the expression in a form which does not contain any roots in the denominator. This is because it is difficult to divide by irrational numbers by hand. In the example below, multiplying by \displaystyle 1=\frac{\sqrt{2}}{\sqrt{2}} , one obtains
\displaystyle \frac{1}{\sqrt{2}}
= \frac{1\times\sqrt{2}}{\sqrt{2}\times\sqrt{2}} = \frac{\sqrt{2}}{2} |
which is usually preferable. This is called rationalising the denominator.
In slightly more complicated cases, we can use the difference of two squares, \displaystyle (a+b)(a-b) = a^2 – b^2, to eliminate the root from the denominator. The trick is this: if the denominator is \displaystyle a+b\sqrt c, then we multiply the numerator and denominator by \displaystyle a-b\sqrt c. For example,
\displaystyle \begin{align*}
\frac{\sqrt{3}}{\sqrt{2}+1} &= \frac{\sqrt{3}}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{\sqrt{3}\,(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}\\[4pt] &= \frac{\sqrt{3}\times\sqrt{2} - \sqrt{3}\times1}{(\sqrt{2}\,)^2 - 1^2 } = \frac{\sqrt{3 \times 2} - \sqrt{3}}{ 2 - 1 } = \frac{\sqrt{6} - \sqrt{3}}{ 1 } = \sqrt{6} - \sqrt{3}\mbox{.} \end{align*} |
Example 6
- \displaystyle \frac{10\sqrt{3}}{\sqrt{5}} = \frac{10\sqrt{3}\times\sqrt{5}}{\sqrt{5}\times\sqrt{5}} = \frac{10\sqrt{15}}{5} = 2\sqrt{15}
- \displaystyle \frac{1+\sqrt{3}}{\sqrt{2}} = \frac{(1+\sqrt{3})\times\sqrt{2}}{\sqrt{2}\times\sqrt{2}} = \frac{\sqrt{2}+\sqrt{6}}{2}
- \displaystyle \frac{3}{\sqrt{2}-2} = \frac{3(\sqrt{2}+2)}{(\sqrt{2}-2)(\sqrt{2}+2)} = \frac{3\sqrt{2}+6}{(\sqrt{2}\,)^2-2^2} = \frac{3\sqrt{2}+6}{2-4} = -\frac{3\sqrt{2}+6}{2}
- \displaystyle \frac{\sqrt{2}}{\sqrt{6}+\sqrt{3}}
= \frac{\sqrt{2}\,(\sqrt{6}-\sqrt{3}\,)}{(\sqrt{6}+\sqrt{3}\,)
(\sqrt{6}-\sqrt{3}\,)}
= \frac{\sqrt{2}\,\sqrt{6}-\sqrt{2}\,\sqrt{3}}{(\sqrt{6}\,)^2
-(\sqrt{3}\,)^2}\vphantom{\Biggl(}
\displaystyle \phantom{\frac{\sqrt{2}}{\sqrt{6}+\sqrt{3}}\vphantom{\Biggl(}}{} = \frac{\sqrt{2}\,\sqrt{2\times 3}-\sqrt{2}\,\sqrt{3}}{6-3} = \frac{2\sqrt{3}-\sqrt{2}\,\sqrt{3}}{3} = \frac{(2-\sqrt{2}\,)\sqrt{3}}{3} \vphantom{\displaystyle\frac{a^{\textstyle b^{\textstyle c}}}{b}}
Study advice
Basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that...
The square root of a number is always non-negative (that is, positive or zero)!
Rules for roots are actually a special case of laws of exponents, since, for example, \displaystyle \sqrt{x} = x^{1/2}.
Reviews
For those of you who want to deepen your understanding or need more detailed explanations consider the following references
Learn more about square roots from Wikipedia
How do we know that the square root of 2 is not a fraction?
Useful web sites
How to find the root of a number, without the help of calculators?