1.3 Powers

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (15:14, 30 December 2008) (edit) (undo)
(Idiomatic English, localisation of terminology and notation)
 
Line 22: Line 22:
* Recognise the concepts of base and exponent.
* Recognise the concepts of base and exponent.
*Calculate integer power expressions.
*Calculate integer power expressions.
-
*Use the laws of exponents to simplify expressions containing powers.
+
*Use the laws of indices to simplify expressions containing powers.
-
* Know when the laws of exponents are applicable (positive basis).
+
* Know when the laws of indices are applicable.
-
*Determine which of two powers is the larger based on a comparison of the base / exponent.
+
*Determine which of two powers is the larger based on a comparison of the base or exponent/index.
}}
}}
Line 31: Line 31:
We use the multiplication symbol as a shorthand for repeated addition of the same number. For example:
We use the multiplication symbol as a shorthand for repeated addition of the same number. For example:
-
{{Displayed math||<math>4 + 4 + 4 + 4 + 4 = 4 \cdot 5\mbox{.}</math>}}
+
{{Displayed math||<math>4 + 4 + 4 + 4 + 4 = 4 \times 5\mbox{.}</math>}}
In a similar way we use exponentials as a short-hand for repeated multiplication
In a similar way we use exponentials as a short-hand for repeated multiplication
of the same number:
of the same number:
-
{{Displayed math||<math> 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^5\mbox{.}</math>}}
+
{{Displayed math||<math> 4 \times 4 \times 4 \times 4 \times 4 = 4^5\mbox{.}</math>}}
-
The 4 is called the base of the power and the 5 is its exponent.
+
The 4 is called the base of the power and the 5 is its exponent or index (pl. indices).
<div class="exempel">
<div class="exempel">
Line 44: Line 44:
<ol type="a">
<ol type="a">
-
<li><math>5^3 = 5 \cdot 5 \cdot 5
+
<li><math>5^3 = 5 \times 5 \times 5
= 125</math></li>
= 125</math></li>
<li><math>10^5
<li><math>10^5
-
= 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 100 000</math></li>
+
= 10 \times 10 \times 10 \times 10 \times 10 = 100 000</math></li>
-
<li><math>0{,}1^3
+
<li><math>0{.}1^3
-
= 0\text{.}1 \cdot 0\text{.}1 \cdot 0\text{.}1 = 0\text{.}001</math></li>
+
= 0\text{.}1 \times 0\text{.}1 \times 0\text{.}1 = 0\text{.}001</math></li>
<li><math>(-2)^4
<li><math>(-2)^4
-
= (-2) \cdot (-2) \cdot (-2) \cdot (-2)= 16</math>, but <math> -2^4
+
= (-2) \times (-2) \times (-2) \times (-2)= 16</math>, but <math> -2^4
-
= -(2^4) = - (2 \cdot 2 \cdot 2 \cdot 2) = -16</math></li>
+
= -(2^4) = - (2 \times 2 \times 2 \times 2) = -16</math></li>
-
<li><math> 2\cdot 3^2 = 2 \cdot 3 \cdot 3 = 18</math>, but <math>
+
<li><math> 2\times 3^2 = 2 \times 3 \times 3 = 18</math>, but <math>
-
(2\cdot3)^2 = 6^2 = 36</math></li>
+
(2\times3)^2 = 6^2 = 36</math></li>
</ol>
</ol>
</div>
</div>
Line 64: Line 64:
<li><math>
<li><math>
\left(\displaystyle\frac{2}{3}\right)^3
\left(\displaystyle\frac{2}{3}\right)^3
-
= \displaystyle\frac{2}{3}\cdot \displaystyle\frac{2}{3}
+
= \displaystyle\frac{2}{3}\times \displaystyle\frac{2}{3}
-
\cdot \displaystyle\frac{2}{3}
+
\times \displaystyle\frac{2}{3}
= \displaystyle\frac{2^3}{3^3}
= \displaystyle\frac{2^3}{3^3}
= \displaystyle\frac{8}{27}</math></li>
= \displaystyle\frac{8}{27}</math></li>
-
<li><math>(2\cdot 3)^4
+
<li><math>(2\times 3)^4
-
= (2\cdot 3)\cdot(2\cdot 3)\cdot(2\cdot 3)\cdot(2\cdot 3)</math><br>
+
= (2\times 3)\times(2\times 3)\times(2\times 3)\times(2\times 3)</math><br>
-
<math>\phantom{(2\cdot 3)^4}{}
+
<math>\phantom{(2\times 3)^4}{}
-
= 2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 3\cdot 3\cdot 3
+
= 2\times 2\times 2\times 2\times 3\times 3\times 3\times 3
-
= 2^4 \cdot 3^4 = 1296</math></li>
+
= 2^4 \times 3^4 = 1296</math></li>
</ol>
</ol>
</div>
</div>
Line 87: Line 87:
There are a few more rules that lead on from the definition of power which are useful when performing calculations. You can see for example that
There are a few more rules that lead on from the definition of power which are useful when performing calculations. You can see for example that
-
{{Displayed math||<math>2^3 \cdot 2^5 = \underbrace{\,2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm factors }} \cdot \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 5\ {\rm factors }} = \underbrace{\,2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ (3 + 5)\ {\rm factors}} = 2^{3+5} = 2^8\text{,}</math>}}
+
{{Displayed math||<math>2^3 \times 2^5 = \underbrace{\,2\times 2\times 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm factors }} \times \underbrace{\,2\times 2\times 2\times 2\times 2\times 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 5\ {\rm factors }} = \underbrace{\,2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ (3 + 5)\ {\rm factors}} = 2^{3+5} = 2^8\text{,}</math>}}
-
which generally can be expressed as
+
which can be expressed more generally as
<div class="regel">
<div class="regel">
-
{{Displayed math||<math>a^m \cdot a^n = a^{m+n}\mbox{.}</math>}}
+
{{Displayed math||<math>a^m \times a^n = a^{m+n}\mbox{.}</math>}}
</div>
</div>
There is also a useful simplification rule for the division of powers that have the same base.
There is also a useful simplification rule for the division of powers that have the same base.
-
{{Displayed math||<math>\frac{2^7}{2^3}=\displaystyle\frac{ 2\cdot 2\cdot 2\cdot 2\cdot \not{2}\cdot \not{2}\cdot \not{2} }{ \not{2}\cdot \not{2}\cdot \not{2}} = 2^{7-3}=2^4\mbox{.}</math>}}
+
{{Displayed math||<math>\frac{2^7}{2^3}=\displaystyle\frac{ 2\times 2\times 2\times 2\times \not{2}\times \not{2}\times \not{2} }{ \not{2}\times \not{2}\times \not{2}} = 2^{7-3}=2^4\mbox{.}</math>}}
The general rule is
The general rule is
Line 105: Line 105:
For the case when the base itself is a power there is another useful rule. We see that
For the case when the base itself is a power there is another useful rule. We see that
-
{{Displayed math||<math> (5^2)^3 = 5^2 \cdot 5^2 \cdot 5^2 = \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \cdot \underbrace{\,5\cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm factors}} = \underbrace{\,5\cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm times}\ 2\ {\rm factors}} = 5^{2 \cdot 3} = 5^6\mbox{}</math>}}
+
{{Displayed math||<math> (5^2)^3 = 5^2 \times 5^2 \times 5^2 = \underbrace{\,5\times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \times \underbrace{\,5\times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \times \underbrace{\,5\times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm factors}} = \underbrace{\,5\times 5 \times 5 \times 5 \times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm times}\ 2\ {\rm factors}} = 5^{2 \times 3} = 5^6\mbox{}</math>}}
and
and
-
{{Displayed math||<math> (5^3)^2 = 5^3\cdot5^3= \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} \cdot \underbrace{\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} = \underbrace{\,5\cdot 5 \cdot 5\,\cdot\,5\cdot 5 \cdot 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm times}\ 3\ {\rm factors}}=5^{3\cdot2}=5^6\mbox{.}</math>}}
+
{{Displayed math||<math> (5^3)^2 = 5^3\times5^3= \underbrace{\,5\times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} \times \underbrace{\,5\times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} = \underbrace{\,5\times 5 \times 5\,\times\,5\times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm times}\ 3\ {\rm factors}}=5^{3\times2}=5^6\mbox{.}</math>}}
Generally, this can be written
Generally, this can be written
<div class="regel">
<div class="regel">
-
{{Displayed math||<math>(a^m)^n = a^{m \cdot n}\mbox{.} </math>}}
+
{{Displayed math||<math>(a^m)^n = a^{m\,n}\mbox{.} </math>}}
</div>
</div>
Line 121: Line 121:
<ol type="a">
<ol type="a">
-
<li><math>2^9 \cdot 2^{14}
+
<li><math>2^9 \times 2^{14}
= 2^{9+14} = 2^{23}</math></li>
= 2^{9+14} = 2^{23}</math></li>
-
<li><math>5\cdot5^3
+
<li><math>5\times5^3
-
= 5^1\cdot5^3 = 5^{1+3} = 5^4</math></li>
+
= 5^1\times5^3 = 5^{1+3} = 5^4</math></li>
-
<li><math>3^2 \cdot 3^3 \cdot 3^4
+
<li><math>3^2 \times 3^3 \times 3^4
= 3^{2+3+4} = 3^9</math></li>
= 3^{2+3+4} = 3^9</math></li>
-
<li><math>10^5 \cdot 1000 = 10^5 \cdot 10^3 = 10^{5+3} = 10^8</math></li>
+
<li><math>10^5 \times 1000 = 10^5 \times 10^3 = 10^{5+3} = 10^8</math></li>
</ol>
</ol>
</div>
</div>
Line 142: Line 142:
</div>
</div>
 +
Note that if a fraction has the same power expression in both the numerator and the denominator, then we can simplify in either of two ways:
 +
 +
{{Displayed math||<math>\frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{as well as}\quad \frac{5^3}{5^3} = \frac{ 5 \times 5 \times 5 }{ 5 \times 5 \times 5 } = \frac{125}{125} = 1\mbox{.}</math>}}
-
If a fraction has the same expression for the exponent in both the numerator and the denominator we can simplify in two ways:
+
So the only way to ensure that the rules of exponents agree is if we make the following natural definition. For all non-zero ''a'' we have
-
{{Displayed math||<math>\frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{as well as}\quad \frac{5^3}{5^3} = \frac{ 5 \cdot 5 \cdot 5 }{ 5 \cdot 5 \cdot 5 } = \frac{125}{125} = 1\mbox{.}</math>}}
+
-
 
+
-
 
+
-
The only way for the rules of exponents to agree is to make the
+
-
following natural definition. For all non zero ''a'' we have
+
-
 
+
<div class="regel">
<div class="regel">
Line 156: Line 153:
We can also run into examples where the exponent in the denominator is greater than that in the numerator. For example we have
We can also run into examples where the exponent in the denominator is greater than that in the numerator. For example we have
-
{{Displayed math||<math>\frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{and}\quad \frac{3^4}{3^6} = \frac{\not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} }{ \not{3} \cdot \not{3} \cdot \not{3} \cdot \not{3} \cdot 3 \cdot 3} = \frac{1}{3 \cdot 3} = \frac{1}{3^2}\mbox{.}</math>}}
+
{{Displayed math||<math>\frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{and}\quad \frac{3^4}{3^6} = \frac{\not{3} \times \not{3} \times \not{3} \times \not{3} }{ \not{3} \times \not{3} \times \not{3} \times \not{3} \times 3 \times 3} = \frac{1}{3 \times 3} = \frac{1}{3^2}\mbox{.}</math>}}
-
It is therefore necessary that we assume the negative sign of the exponent implies that
+
It is therefore necessary that we assume that
{{Displayed math||<math>3^{-2} = \frac{1}{3^2}\mbox{.}</math>}}
{{Displayed math||<math>3^{-2} = \frac{1}{3^2}\mbox{.}</math>}}
 +
Once more in the interests of consistency, the general definition for negative exponents is that for all non zero numbers ''a'', we have
-
We therefore note that the general definition for negative exponents is that for all non zero numbers ''a'', we have
 
-
of as follows
 
<div class="regel">
<div class="regel">
{{Displayed math||<math>a^{-n} = \frac{1}{a^n}\mbox{.}</math>}}
{{Displayed math||<math>a^{-n} = \frac{1}{a^n}\mbox{.}</math>}}
Line 175: Line 171:
<li><math>\frac{7^{1293}}{7^{1293}}
<li><math>\frac{7^{1293}}{7^{1293}}
= 7^{1293 - 1293} = 7^0 = 1</math></li>
= 7^{1293 - 1293} = 7^0 = 1</math></li>
-
<li><math>3^7 \cdot 3^{-9} \cdot 3^4
+
<li><math>3^7 \times 3^{-9} \times 3^4
= 3^{7+(-9)+4} = 3^2</math></li>
= 3^{7+(-9)+4} = 3^2</math></li>
-
<li><math>0{,}001 = \frac{1}{1000}
+
<li><math>0{.}001 = \frac{1}{1000}
= \frac{1}{10^3} = 10^{-3}</math></li>
= \frac{1}{10^3} = 10^{-3}</math></li>
-
<li><math>0{,}008 = \frac{8}{1000}
+
<li><math>0{.}008 = \frac{8}{1000}
= \frac{1}{125} = \frac{1}{5^3} = 5^{-3}</math></li>
= \frac{1}{125} = \frac{1}{5^3} = 5^{-3}</math></li>
<li><math>\left(\frac{2}{3}\right)^{-1}
<li><math>\left(\frac{2}{3}\right)^{-1}
= \frac{1}{\displaystyle\left(\frac{2}{3}\right)^1}
= \frac{1}{\displaystyle\left(\frac{2}{3}\right)^1}
-
= 1\cdot \frac{3}{2} = \frac{3}{2}</math></li>
+
= 1\times \frac{3}{2} = \frac{3}{2}</math></li>
<li><math>\left(\frac{1}{3^2}\right)^{-3}
<li><math>\left(\frac{1}{3^2}\right)^{-3}
-
= (3^{-2})^{-3} = 3^{(-2)\cdot(-3)}=3^6</math></li>
+
= (3^{-2})^{-3} = 3^{(-2)\times(-3)}=3^6</math></li>
-
<li><math>0.01^5 = (10^{-2})^5 = 10^{-2 \cdot 5} = 10^{-10}</math></li>
+
<li><math>0.01^5 = (10^{-2})^5 = 10^{-2 \times 5} = 10^{-10}</math></li>
</ol>
</ol>
</div>
</div>
Line 204: Line 200:
<li><math>(-1)^{56} = 1\quad</math> as <math>56</math> is an even number </li>
<li><math>(-1)^{56} = 1\quad</math> as <math>56</math> is an even number </li>
<li><math>\frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad</math> because 11 is an odd number </li>
<li><math>\frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad</math> because 11 is an odd number </li>
-
<li><math>\frac{(-2)^{127}}{2^{130}} = \frac{(-1 \cdot 2)^{127}}{2^{130}}
+
<li><math>\frac{(-2)^{127}}{2^{130}} = \frac{(-1 \times 2)^{127}}{2^{130}}
-
= \frac{(-1)^{127} \cdot 2^{127}}{2^{130}}
+
= \frac{(-1)^{127} \times 2^{127}}{2^{130}}
-
= \frac{-1 \cdot 2^{127}}{2^{130}}</math>
+
= \frac{-1 \times 2^{127}}{2^{130}}</math>
<math>\phantom{\frac{(-2)^{127}}{2^{130}}}{} = - 2^{127-130} = -2^{-3}
<math>\phantom{\frac{(-2)^{127}}{2^{130}}}{} = - 2^{127-130} = -2^{-3}
= - \frac{1}{2^3} = - \frac{1}{8}</math></li>
= - \frac{1}{2^3} = - \frac{1}{8}</math></li>
Line 215: Line 211:
==Changing the base ==
==Changing the base ==
-
A point to observe is that when simplifying expressions one should try if possible to combine powers by choosing the same base. This often involves selecting 2, 3 or 5 as a base. It is therefore a good idea to learn to recognise the powers of these numbers, such as:
+
A point to observe is that when simplifying expressions one should try if possible to combine powers by choosing the same base. This often involves selecting 2, 3 or 5 as a base. It is therefore a good idea to learn to recognise the smaller powers of these numbers, such as:
{{Displayed math||<math>4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots</math>}}
{{Displayed math||<math>4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots</math>}}
Line 237: Line 233:
<ol type="a">
<ol type="a">
-
<li> Write <math>\ 8^3 \cdot 4^{-2} \cdot 16\ </math> as a power with base 2
+
<li> Write <math>\ 8^3 \times 4^{-2} \times 16\ </math> as a power with base 2
<br/>
<br/>
<br/>
<br/>
-
:<math>8^3 \cdot 4^{-2} \cdot 16 = (2^3)^3 \cdot (2^2)^{-2} \cdot 2^4 = 2^{3 \cdot 3} \cdot 2^{2 \cdot (-2)} \cdot 2^4</math>
+
:<math>8^3 \times 4^{-2} \times 16 = (2^3)^3 \times (2^2)^{-2} \times 2^4 = 2^{3 \times 3} \times 2^{2 \times (-2)} \times 2^4</math>
-
:<math>\qquad\quad{}= 2^9 \cdot 2^{-4} \cdot 2^4 = 2^{9-4+4} =2^9</math></li>
+
:<math>\qquad\quad{}= 2^9 \times 2^{-4} \times 2^4 = 2^{9-4+4} =2^9</math></li>
-
<li> Write <math>\ \frac{27^2 \cdot (1/9)^{-2}}{81^2}\ </math> as a power with base 3.
+
<li> Write <math>\ \frac{27^2 \times (1/9)^{-2}}{81^2}\ </math> as a power with base 3.
<br/>
<br/>
<br/>
<br/>
-
:<math>\frac{27^2 \cdot (1/9)^{-2}}{81^2} = \frac{(3^3)^2 \cdot (1/3^2)^{-2}}{(3^4)^2} = \frac{(3^3)^2 \cdot (3^{-2})^{-2}}{(3^4)^2}</math>
+
:<math>\frac{27^2 \times (1/9)^{-2}}{81^2} = \frac{(3^3)^2 \times (1/3^2)^{-2}}{(3^4)^2} = \frac{(3^3)^2 \times (3^{-2})^{-2}}{(3^4)^2}</math>
-
:<math>\qquad\quad{} = \frac{3^{3 \cdot 2} \cdot 3^{(-2) \cdot (-2)}}{3^{4 \cdot 2}} = \frac{3^6\cdot 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2</math></li>
+
:<math>\qquad\quad{} = \frac{3^{3 \times 2} \times 3^{(-2) \times (-2)}}{3^{4 \times 2}} = \frac{3^6\times 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2</math></li>
-
<li> Write <math>\frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4}</math> in as simple a form as possible.
+
<li> Write <math>\frac{81 \times 32^2 \times (2/3)^2}{2^5+2^4}</math> in as simple a form as possible.
<br/>
<br/>
<br/>
<br/>
-
:<math>\frac{81 \cdot 32^2 \cdot (2/3)^2}{2^5+2^4} = \frac{3^4 \cdot (2^5)^2 \cdot \displaystyle\frac{2^2}{3^2}}{2^{4+1}+2^4} = \frac{3^4 \cdot 2^{5 \cdot 2} \cdot \displaystyle\frac{2^2}{3^2}}{2^4 \cdot 2^1 +2^4} = \frac{3^4 \cdot 2^{10} \cdot \displaystyle\frac{2^2}{3^2}}{2^4 \cdot(2^1+1)}</math>
+
:<math>\frac{81 \times 32^2 \times (2/3)^2}{2^5+2^4} = \frac{3^4 \times (2^5)^2 \times \displaystyle\frac{2^2}{3^2}}{2^{4+1}+2^4} = \frac{3^4 \times 2^{5 \times 2} \times \displaystyle\frac{2^2}{3^2}}{2^4 \times 2^1 +2^4} = \frac{3^4 \times 2^{10} \times \displaystyle\frac{2^2}{3^2}}{2^4 \times(2^1+1)}</math>
-
:<math>\qquad\quad{} = \frac{ \displaystyle\frac{3^4 \cdot 2^{10} \cdot 2^2}{3^2}}{2^4 \cdot 3} = \frac{ 3^4 \cdot 2^{10} \cdot 2^2 }{3^2 \cdot 2^4 \cdot 3 } = 3^{4-2-1} \cdot 2^{10+2-4} = 3^1 \cdot 2^8= 3\cdot 2^8</math></li>
+
:<math>\qquad\quad{} = \frac{ \displaystyle\frac{3^4 \times 2^{10} \times 2^2}{3^2}}{2^4 \times 3} = \frac{ 3^4 \times 2^{10} \times 2^2 }{3^2 \times 2^4 \times 3 } = 3^{4-2-1} \times 2^{10+2-4} = 3^1 \times 2^8= 3\times 2^8</math></li>
</ol>
</ol>
</div>
</div>
Line 260: Line 256:
== Rational exponents ==
== Rational exponents ==
-
What happens if a number is raised to a rational exponent? Do the definitions and the rules we have used in the above calculations still hold?
+
What happens if a number is raised to a rational (that is, a fractional) exponent? Do the definitions and the rules we have used in the above calculations still hold?
For instance we note that
For instance we note that
-
{{Displayed math||<math>2^{1/2} \cdot 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2</math>}}
+
{{Displayed math||<math>2^{1/2} \times 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2.</math>}}
-
so <math> 2^{1/2} </math> must be the same as <math>\sqrt{2}</math>. This is because <math>\sqrt2</math> is defined as the number which satisfies <math>\sqrt2\cdot\sqrt2 = 2</math>&nbsp;.
+
That is, <math> 2^{1/2} </math> is the number that, when multiplied by itself, gives 2; in other words, <math>\sqrt2</math>.
Generally, we define
Generally, we define
Line 272: Line 268:
</div>
</div>
-
We must assume that <math>a\ge 0</math> since no real number multiplied by itself can give a negative number.
+
(We must assume that <math>a\ge0</math> since negative numbers do not have real square roots. )
We also see that, for example,
We also see that, for example,
-
{{Displayed math||<math>5^{1/3} \cdot 5^{1/3} \cdot 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5</math>}}
+
{{Displayed math||<math>5^{1/3} \times 5^{1/3} \times 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5</math>}}
which implies that <math>\,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\,</math>. This can be generalised to
which implies that <math>\,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\,</math>. This can be generalised to
Line 298: Line 294:
<ol type="a">
<ol type="a">
<li><math>27^{1/3} = \sqrt[\scriptstyle 3]{27}
<li><math>27^{1/3} = \sqrt[\scriptstyle 3]{27}
-
= 3\quad</math> as <math>3 \cdot 3 \cdot 3 =27</math></li>
+
= 3\quad</math> as <math>3 \times 3 \times 3 =27</math></li>
<li><math>1000^{-1/3} = \frac{1}{1000^{1/3}}
<li><math>1000^{-1/3} = \frac{1}{1000^{1/3}}
= \frac{1}{(10^3)^{1/3}}
= \frac{1}{(10^3)^{1/3}}
-
= \frac{1}{10^{3 \cdot \frac{1}{3}}} = \frac{1}{10^1}
+
= \frac{1}{10^{3 \times \frac{1}{3}}} = \frac{1}{10^1}
= \frac{1}{10}</math></li>
= \frac{1}{10}</math></li>
<li><math>\frac{1}{\sqrt{8}}
<li><math>\frac{1}{\sqrt{8}}
Line 314: Line 310:
==Comparison of powers ==
==Comparison of powers ==
-
If we do not have access to calculators and wish to compare the size of powers, one can sometimes achieve this by comparing bases or exponents.
+
If we do not have access to calculators and wish to compare the size of powers, we can sometimes do this by comparing bases or exponents.
If the base of a power is greater than <math>1</math> then the power increases as the exponent increases. On the other hand, if the base lies between <math>0</math> and <math>1</math> then the power decreases as the exponent grows.
If the base of a power is greater than <math>1</math> then the power increases as the exponent increases. On the other hand, if the base lies between <math>0</math> and <math>1</math> then the power decreases as the exponent grows.
Line 349: Line 345:
''' Example 11'''
''' Example 11'''
-
Determine which of the following pairs of numbers is the greater:
+
For each of the following pairs of numbers, determine which is the greater:
<ol type="a">
<ol type="a">
Line 355: Line 351:
<br>
<br>
<br>
<br>
-
The base 25 can be rewritten in terms of the second base <math>5</math> by putting <math>25= 5\cdot 5= 5^2</math>. Therefore
+
The base 25 can be rewritten in terms of the second base <math>5</math> by putting <math>25= 5\times 5= 5^2</math>. Therefore
-
{{Displayed math||<math>25^{1/3} = (5^2)^{1/3} = 5^{2 \cdot \frac{1}{3}}= 5^{2/3}\text{,}</math>}}
+
{{Displayed math||<math>25^{1/3} = (5^2)^{1/3} = 5^{2 \times \frac{1}{3}}= 5^{2/3}\text{,}</math>}}
hence we see that
hence we see that
Line 370: Line 366:
Both <math>8</math> and <math>128</math> can be written as powers of <math>2</math>
Both <math>8</math> and <math>128</math> can be written as powers of <math>2</math>
-
{{Displayed math||<math>\eqalign{8 &= 2\cdot 4 = 2 \cdot 2 \cdot 2 = 2^3\mbox{,}\\ 128 &= 2\cdot 64 = 2\cdot 2\cdot 32 = 2\cdot 2\cdot 2\cdot 16 = 2\cdot 2\cdot 2\cdot 2\cdot 8\\ &= 2\cdot 2\cdot 2\cdot 2\cdot 2^3 = 2^7\mbox{.}}</math>}}
+
{{Displayed math||<math>\eqalign{8 &= 2\times 4 = 2 \times 2 \times 2 = 2^3\mbox{,}\\ 128 &= 2\times 64 = 2\times 2\times 32 = 2\times 2\times 2\times 16 = 2\times 2\times 2\times 2\times 8\\ &= 2\times 2\times 2\times 2\times 2^3 = 2^7\mbox{.}}</math>}}
This gives
This gives
Line 376: Line 372:
{{Displayed math||<math>\begin{align*}
{{Displayed math||<math>\begin{align*}
(\sqrt{8}\,)^5 &= (8^{1/2})^5 = (8)^{5/2} = (2^3)^{5/2}
(\sqrt{8}\,)^5 &= (8^{1/2})^5 = (8)^{5/2} = (2^3)^{5/2}
-
= 2^{3\cdot\frac{5}{2}}= 2^{15/2}\\
+
= 2^{3\times\frac{5}{2}}= 2^{15/2}\\
128 &= 2^7 = 2^{14/2}
128 &= 2^7 = 2^{14/2}
\end{align*}</math>}}
\end{align*}</math>}}
Line 392: Line 388:
{{Displayed math||<math>\begin{align*}
{{Displayed math||<math>\begin{align*}
-
(8^2)^{1/5} &= (8)^{2/5} = (2^3)^{2/5} = 2^{3\cdot \frac{2}{5}}
+
(8^2)^{1/5} &= (8)^{2/5} = (2^3)^{2/5} = 2^{3\times \frac{2}{5}}
= 2^{6/5}\mbox{,}\\
= 2^{6/5}\mbox{,}\\
(\sqrt{27}\,)^{4/5} &= (27^{1/2})^{4/5}
(\sqrt{27}\,)^{4/5} &= (27^{1/2})^{4/5}
-
= 27^{ \frac{1}{2} \cdot \frac{4}{5}} = 27^{2/5}
+
= 27^{ \frac{1}{2} \times \frac{4}{5}} = 27^{2/5}
-
= (3^3)^{2/5} = 3^{3 \cdot \frac{2}{5}}
+
= (3^3)^{2/5} = 3^{3 \times \frac{2}{5}}
= 3^{6/5}\mbox{.}
= 3^{6/5}\mbox{.}
\end{align*}</math>}}
\end{align*}</math>}}

Current revision

       Theory          Exercises      

Content:

  • Positive integer exponent
  • Negative integer exponent
  • Rational exponents
  • Laws of exponents

Learning outcomes:

After this section you will have learned to:

  • Recognise the concepts of base and exponent.
  • Calculate integer power expressions.
  • Use the laws of indices to simplify expressions containing powers.
  • Know when the laws of indices are applicable.
  • Determine which of two powers is the larger based on a comparison of the base or exponent/index.

Integer exponents

We use the multiplication symbol as a shorthand for repeated addition of the same number. For example:

\displaystyle 4 + 4 + 4 + 4 + 4 = 4 \times 5\mbox{.}

In a similar way we use exponentials as a short-hand for repeated multiplication of the same number:

\displaystyle 4 \times 4 \times 4 \times 4 \times 4 = 4^5\mbox{.}

The 4 is called the base of the power and the 5 is its exponent or index (pl. indices).

Example 1

  1. \displaystyle 5^3 = 5 \times 5 \times 5 = 125
  2. \displaystyle 10^5 = 10 \times 10 \times 10 \times 10 \times 10 = 100 000
  3. \displaystyle 0{.}1^3 = 0\text{.}1 \times 0\text{.}1 \times 0\text{.}1 = 0\text{.}001
  4. \displaystyle (-2)^4 = (-2) \times (-2) \times (-2) \times (-2)= 16, but \displaystyle -2^4 = -(2^4) = - (2 \times 2 \times 2 \times 2) = -16
  5. \displaystyle 2\times 3^2 = 2 \times 3 \times 3 = 18, but \displaystyle (2\times3)^2 = 6^2 = 36

Example 2

  1. \displaystyle \left(\displaystyle\frac{2}{3}\right)^3 = \displaystyle\frac{2}{3}\times \displaystyle\frac{2}{3} \times \displaystyle\frac{2}{3} = \displaystyle\frac{2^3}{3^3} = \displaystyle\frac{8}{27}
  2. \displaystyle (2\times 3)^4 = (2\times 3)\times(2\times 3)\times(2\times 3)\times(2\times 3)
    \displaystyle \phantom{(2\times 3)^4}{} = 2\times 2\times 2\times 2\times 3\times 3\times 3\times 3 = 2^4 \times 3^4 = 1296

The last example can be generalised to two useful rules when calculating powers:

\displaystyle \left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{and}\quad (ab)^m = a^m b^m\,\mbox{.}


Laws of exponents

There are a few more rules that lead on from the definition of power which are useful when performing calculations. You can see for example that

\displaystyle 2^3 \times 2^5 = \underbrace{\,2\times 2\times 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm factors }} \times \underbrace{\,2\times 2\times 2\times 2\times 2\times 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 5\ {\rm factors }} = \underbrace{\,2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ (3 + 5)\ {\rm factors}} = 2^{3+5} = 2^8\text{,}

which can be expressed more generally as

\displaystyle a^m \times a^n = a^{m+n}\mbox{.}

There is also a useful simplification rule for the division of powers that have the same base.

\displaystyle \frac{2^7}{2^3}=\displaystyle\frac{ 2\times 2\times 2\times 2\times \not{2}\times \not{2}\times \not{2} }{ \not{2}\times \not{2}\times \not{2}} = 2^{7-3}=2^4\mbox{.}

The general rule is

\displaystyle \displaystyle\frac{a^m}{a^n}= a^{m-n}\mbox{.}

For the case when the base itself is a power there is another useful rule. We see that

\displaystyle (5^2)^3 = 5^2 \times 5^2 \times 5^2 = \underbrace{\,5\times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \times \underbrace{\,5\times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \times \underbrace{\,5\times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm factors}} = \underbrace{\,5\times 5 \times 5 \times 5 \times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm times}\ 2\ {\rm factors}} = 5^{2 \times 3} = 5^6\mbox{}

and

\displaystyle (5^3)^2 = 5^3\times5^3= \underbrace{\,5\times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} \times \underbrace{\,5\times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} = \underbrace{\,5\times 5 \times 5\,\times\,5\times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm times}\ 3\ {\rm factors}}=5^{3\times2}=5^6\mbox{.}


Generally, this can be written

\displaystyle (a^m)^n = a^{m\,n}\mbox{.}

Example 3

  1. \displaystyle 2^9 \times 2^{14} = 2^{9+14} = 2^{23}
  2. \displaystyle 5\times5^3 = 5^1\times5^3 = 5^{1+3} = 5^4
  3. \displaystyle 3^2 \times 3^3 \times 3^4 = 3^{2+3+4} = 3^9
  4. \displaystyle 10^5 \times 1000 = 10^5 \times 10^3 = 10^{5+3} = 10^8

Example 4

  1. \displaystyle \frac{3^{100}}{3^{98}} = 3^{100-98} = 3^2
  2. \displaystyle \frac{7^{10}}{7} = \frac{7^{10}}{7^1} = 7^{10-1} = 7^9

Note that if a fraction has the same power expression in both the numerator and the denominator, then we can simplify in either of two ways:

\displaystyle \frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{as well as}\quad \frac{5^3}{5^3} = \frac{ 5 \times 5 \times 5 }{ 5 \times 5 \times 5 } = \frac{125}{125} = 1\mbox{.}

So the only way to ensure that the rules of exponents agree is if we make the following natural definition. For all non-zero a we have

\displaystyle a^0 = 1\mbox{.}

We can also run into examples where the exponent in the denominator is greater than that in the numerator. For example we have

\displaystyle \frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{and}\quad \frac{3^4}{3^6} = \frac{\not{3} \times \not{3} \times \not{3} \times \not{3} }{ \not{3} \times \not{3} \times \not{3} \times \not{3} \times 3 \times 3} = \frac{1}{3 \times 3} = \frac{1}{3^2}\mbox{.}

It is therefore necessary that we assume that

\displaystyle 3^{-2} = \frac{1}{3^2}\mbox{.}

Once more in the interests of consistency, the general definition for negative exponents is that for all non zero numbers a, we have

\displaystyle a^{-n} = \frac{1}{a^n}\mbox{.}


Example 5

  1. \displaystyle \frac{7^{1293}}{7^{1293}} = 7^{1293 - 1293} = 7^0 = 1
  2. \displaystyle 3^7 \times 3^{-9} \times 3^4 = 3^{7+(-9)+4} = 3^2
  3. \displaystyle 0{.}001 = \frac{1}{1000} = \frac{1}{10^3} = 10^{-3}
  4. \displaystyle 0{.}008 = \frac{8}{1000} = \frac{1}{125} = \frac{1}{5^3} = 5^{-3}
  5. \displaystyle \left(\frac{2}{3}\right)^{-1} = \frac{1}{\displaystyle\left(\frac{2}{3}\right)^1} = 1\times \frac{3}{2} = \frac{3}{2}
  6. \displaystyle \left(\frac{1}{3^2}\right)^{-3} = (3^{-2})^{-3} = 3^{(-2)\times(-3)}=3^6
  7. \displaystyle 0.01^5 = (10^{-2})^5 = 10^{-2 \times 5} = 10^{-10}

If the base of a power is \displaystyle -1 then the expression will simplify to either \displaystyle -1 or \displaystyle +1 depending on the value of the exponent

\displaystyle \eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{etc.}}

The rule is that \displaystyle (-1)^n is equal to \displaystyle -1 if \displaystyle n is odd and equal to \displaystyle +1 if \displaystyle n is even .


Example 6

  1. \displaystyle (-1)^{56} = 1\quad as \displaystyle 56 is an even number
  2. \displaystyle \frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad because 11 is an odd number
  3. \displaystyle \frac{(-2)^{127}}{2^{130}} = \frac{(-1 \times 2)^{127}}{2^{130}} = \frac{(-1)^{127} \times 2^{127}}{2^{130}} = \frac{-1 \times 2^{127}}{2^{130}} \displaystyle \phantom{\frac{(-2)^{127}}{2^{130}}}{} = - 2^{127-130} = -2^{-3} = - \frac{1}{2^3} = - \frac{1}{8}


Changing the base

A point to observe is that when simplifying expressions one should try if possible to combine powers by choosing the same base. This often involves selecting 2, 3 or 5 as a base. It is therefore a good idea to learn to recognise the smaller powers of these numbers, such as:

\displaystyle 4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots
\displaystyle 9=3^2,\;\; 27=3^3,\;\; 81=3^4,\;\; 243=3^5,\;\ldots
\displaystyle 25=5^2,\;\; 125=5^3,\;\; 625=5^4,\;\ldots

Similarly, one should become familiar with

\displaystyle \frac{1}{4}=\frac{1}{2^2} = 2^{-2},\;\; \frac{1}{8}=\frac{1}{2^3}=2^{-3},\;\; \frac{1}{16}=\frac{1}{2^4}=2^{-4},\;\ldots
\displaystyle \frac{1}{9}=\frac{1}{3^2}=3^{-2},\;\; \frac{1}{27}=\frac{1}{3^3}=3^{-3},\;\ldots
\displaystyle \frac{1}{25}=\frac{1}{5^2}=5^{-2},\;\; \frac{1}{125}=\frac{1}{5^3}=5^{-3},\;\ldots

and so on.

Example 7

  1. Write \displaystyle \ 8^3 \times 4^{-2} \times 16\ as a power with base 2

    \displaystyle 8^3 \times 4^{-2} \times 16 = (2^3)^3 \times (2^2)^{-2} \times 2^4 = 2^{3 \times 3} \times 2^{2 \times (-2)} \times 2^4
    \displaystyle \qquad\quad{}= 2^9 \times 2^{-4} \times 2^4 = 2^{9-4+4} =2^9
  2. Write \displaystyle \ \frac{27^2 \times (1/9)^{-2}}{81^2}\ as a power with base 3.

    \displaystyle \frac{27^2 \times (1/9)^{-2}}{81^2} = \frac{(3^3)^2 \times (1/3^2)^{-2}}{(3^4)^2} = \frac{(3^3)^2 \times (3^{-2})^{-2}}{(3^4)^2}
    \displaystyle \qquad\quad{} = \frac{3^{3 \times 2} \times 3^{(-2) \times (-2)}}{3^{4 \times 2}} = \frac{3^6\times 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2
  3. Write \displaystyle \frac{81 \times 32^2 \times (2/3)^2}{2^5+2^4} in as simple a form as possible.

    \displaystyle \frac{81 \times 32^2 \times (2/3)^2}{2^5+2^4} = \frac{3^4 \times (2^5)^2 \times \displaystyle\frac{2^2}{3^2}}{2^{4+1}+2^4} = \frac{3^4 \times 2^{5 \times 2} \times \displaystyle\frac{2^2}{3^2}}{2^4 \times 2^1 +2^4} = \frac{3^4 \times 2^{10} \times \displaystyle\frac{2^2}{3^2}}{2^4 \times(2^1+1)}
    \displaystyle \qquad\quad{} = \frac{ \displaystyle\frac{3^4 \times 2^{10} \times 2^2}{3^2}}{2^4 \times 3} = \frac{ 3^4 \times 2^{10} \times 2^2 }{3^2 \times 2^4 \times 3 } = 3^{4-2-1} \times 2^{10+2-4} = 3^1 \times 2^8= 3\times 2^8


Rational exponents

What happens if a number is raised to a rational (that is, a fractional) exponent? Do the definitions and the rules we have used in the above calculations still hold?

For instance we note that

\displaystyle 2^{1/2} \times 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2.

That is, \displaystyle 2^{1/2} is the number that, when multiplied by itself, gives 2; in other words, \displaystyle \sqrt2.

Generally, we define

\displaystyle a^{1/2} = \sqrt{a}\mbox{.}

(We must assume that \displaystyle a\ge0 since negative numbers do not have real square roots. )

We also see that, for example,

\displaystyle 5^{1/3} \times 5^{1/3} \times 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5

which implies that \displaystyle \,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\,. This can be generalised to

\displaystyle a^{1/n} = \sqrt[\scriptstyle n]{a}\mbox{.}

By combining this definition with one of our previous laws for exponents, namely \displaystyle ((a^m)^n=a^{m\cdot n}), we have that for all \displaystyle a\ge0, the following holds:

\displaystyle a^{m/n} = (a^m)^{1/n} = \sqrt[\scriptstyle n]{a^m}

or alternatively

\displaystyle a^{m/n} = (a^{1/n})^m = (\sqrt[\scriptstyle n]{a}\,)^m\mbox{.}

Example 8

  1. \displaystyle 27^{1/3} = \sqrt[\scriptstyle 3]{27} = 3\quad as \displaystyle 3 \times 3 \times 3 =27
  2. \displaystyle 1000^{-1/3} = \frac{1}{1000^{1/3}} = \frac{1}{(10^3)^{1/3}} = \frac{1}{10^{3 \times \frac{1}{3}}} = \frac{1}{10^1} = \frac{1}{10}
  3. \displaystyle \frac{1}{\sqrt{8}} = \frac{1}{8^{1/2}} = \frac{1}{(2^3)^{1/2}} = \frac{1}{2^{3/2}} = 2^{-3/2}
  4. \displaystyle \frac{1}{16^{-1/3}} = \frac{1}{(2^4)^{-1/3}} = \frac{1}{2^{-4/3}} = 2^{-(-4/3)}= 2^{4/3}


Comparison of powers

If we do not have access to calculators and wish to compare the size of powers, we can sometimes do this by comparing bases or exponents.

If the base of a power is greater than \displaystyle 1 then the power increases as the exponent increases. On the other hand, if the base lies between \displaystyle 0 and \displaystyle 1 then the power decreases as the exponent grows.

Example 9

  1. \displaystyle \quad 3^{5/6} > 3^{3/4}\quad because the base \displaystyle 3 is greater than \displaystyle 1 and the first exponent \displaystyle 5/6 is greater than the second exponent \displaystyle 3/4.
  2. \displaystyle \quad 3^{-3/4} > 3^{-5/6}\quad as the base is greater than \displaystyle 1 and the exponents satisfy \displaystyle -3/4 > - 5/6.
  3. \displaystyle \quad 0\text{.}3^5 < 0\text{.}3^4 \quadas the base \displaystyle 0\text{.}3 is between \displaystyle 0 and \displaystyle 1 and \displaystyle 5 > 4.

If a power has a positive exponent it increases as the base increases. The opposite applies if the exponent is negative, that is to say the power decreases as the base increases.

Example 10

  1. \displaystyle \quad 5^{3/2} > 4^{3/2}\quad as the base \displaystyle 5 is larger than the base \displaystyle 4 and both powers have the same positive exponent \displaystyle 3/2.
  2. \displaystyle \quad 2^{-5/3} > 3^{-5/3}\quad as the bases satisfy \displaystyle 2<3 and the powers have a negative exponent \displaystyle -5/3.

Sometimes powers need to be rewritten in order to determine the relative sizes. For example to compare \displaystyle 125^2 with \displaystyle 36^3 we can rewrite them as

\displaystyle

125^2 = (5^3)^2 = 5^6\quad \text{and}\quad 36^3 = (6^2)^3 = 6^6

after which we see that \displaystyle 36^3 > 125^2.

Example 11

For each of the following pairs of numbers, determine which is the greater:

  1. \displaystyle 25^{1/3}   and  \displaystyle 5^{3/4} .

    The base 25 can be rewritten in terms of the second base \displaystyle 5 by putting \displaystyle 25= 5\times 5= 5^2. Therefore
    \displaystyle 25^{1/3} = (5^2)^{1/3} = 5^{2 \times \frac{1}{3}}= 5^{2/3}\text{,}

    hence we see that

    \displaystyle 5^{3/4} > 25^{1/3}
    since \displaystyle \frac{3}{4} > \frac{2}{3} and the base \displaystyle 5 is larger than \displaystyle 1.
  2. \displaystyle (\sqrt{8}\,)^5   and \displaystyle 128.

    Both \displaystyle 8 and \displaystyle 128 can be written as powers of \displaystyle 2
    \displaystyle \eqalign{8 &= 2\times 4 = 2 \times 2 \times 2 = 2^3\mbox{,}\\ 128 &= 2\times 64 = 2\times 2\times 32 = 2\times 2\times 2\times 16 = 2\times 2\times 2\times 2\times 8\\ &= 2\times 2\times 2\times 2\times 2^3 = 2^7\mbox{.}}

    This gives

    \displaystyle \begin{align*}
     (\sqrt{8}\,)^5  &= (8^{1/2})^5 = (8)^{5/2} = (2^3)^{5/2}
                      = 2^{3\times\frac{5}{2}}= 2^{15/2}\\
     128 &= 2^7 = 2^{14/2}
     \end{align*}
    

    and thus

    \displaystyle (\sqrt{8}\,)^5 > 128
    because \displaystyle \frac{15}{2} > \frac{14}{2} and the base \displaystyle 2 is greater than \displaystyle 1.
  3. \displaystyle (8^2)^{1/5} and \displaystyle (\sqrt{27}\,)^{4/5}.

    Since \displaystyle 8=2^3 and \displaystyle 27=3^3, the first step is to simplify and write the numbers as powers of \displaystyle 2 and \displaystyle 3 respectively,
    \displaystyle \begin{align*}
     (8^2)^{1/5} &= (8)^{2/5} = (2^3)^{2/5} = 2^{3\times \frac{2}{5}}
                  = 2^{6/5}\mbox{,}\\
     (\sqrt{27}\,)^{4/5} &= (27^{1/2})^{4/5}
                  = 27^{ \frac{1}{2} \times \frac{4}{5}} = 27^{2/5}
                  = (3^3)^{2/5} = 3^{3 \times \frac{2}{5}}
                  = 3^{6/5}\mbox{.}
    

    \end{align*}

    Now we see that

    \displaystyle (\sqrt{27}\,)^{4/5} > (8^2)^{1/5}

    because \displaystyle 3>2 and exponent \displaystyle \frac{6}{5} is positive.

  4. \displaystyle 3^{1/3}   and  \displaystyle 2^{1/2}

    We rewrite the exponents due to them having a common denominator
    \displaystyle \frac{1}{3} = \frac{2}{6} \quad and \displaystyle \quad \frac{1}{2} = \frac{3}{6}.

    This gives

    \displaystyle \begin{align*}
     3^{1/3} &= 3^{2/6} = (3^2)^{1/6} = 9^{1/6}\\
     2^{1/2} &= 2^{3/6} = (2^3)^{1/6} = 8^{1/6}
    

    \end{align*}

    and we see that

    \displaystyle 3^{1/3} > 2^{1/2}
    because \displaystyle 9>8 and the exponent \displaystyle 1/6 is positive.

Exercises


Study advice

Basic and final tests

After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.


Keep in mind that...

The number raised to the power 0 is always 1 as long as the number (the base) is not 0.


Reviews

For those of you who want to deepen your studies or need more detailed explanations consider the following references

Learn more about powers in the English Wikipedi

What is the greatest prime number? Read more at The Prime Page


Useful web sites

Here you can practise the laws of exponents