Solution 4.3:4f
From Förberedande kurs i matematik 1
(Difference between revisions)
m |
|||
| Line 1: | Line 1: | ||
| - | Using the addition formula for cosine, we can express | + | Using the addition formula for cosine, we can express <math>\cos (v-\pi/3)</math> |
| - | <math>\cos | + | in terms of <math>\cos v</math> and <math>\sin v</math>, |
| - | in terms of | + | |
| - | <math>\ | + | |
| - | and | + | |
| - | <math>\ | + | |
| + | {{Displayed math||<math>\cos\Bigl(v-\frac{\pi}{3}\Bigr) = \cos v\cdot \cos\frac{\pi }{3} + \sin v\cdot \sin\frac{\pi}{3}\,\textrm{.}</math>}} | ||
| - | <math>\cos | + | Since <math>\cos v = b</math> and <math>\sin v = \sqrt{1-b^2}</math> we obtain |
| - | + | {{Displayed math||<math>\cos\Bigl(v-\frac{\pi}{3}\Bigr) = b\cdot\frac{1}{2} + \sqrt{1-b^2}\cdot\frac{\sqrt{3}}{2}\,\textrm{.}</math>}} | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>\cos \ | + | |
Current revision
Using the addition formula for cosine, we can express \displaystyle \cos (v-\pi/3) in terms of \displaystyle \cos v and \displaystyle \sin v,
| \displaystyle \cos\Bigl(v-\frac{\pi}{3}\Bigr) = \cos v\cdot \cos\frac{\pi }{3} + \sin v\cdot \sin\frac{\pi}{3}\,\textrm{.} |
Since \displaystyle \cos v = b and \displaystyle \sin v = \sqrt{1-b^2} we obtain
| \displaystyle \cos\Bigl(v-\frac{\pi}{3}\Bigr) = b\cdot\frac{1}{2} + \sqrt{1-b^2}\cdot\frac{\sqrt{3}}{2}\,\textrm{.} |
