Solution 4.2:4d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 4.2:4d moved to Solution 4.2:4d: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | + | If we use the unit circle and mark on the angle  | |
| - | <  | + | <math>\pi </math>, we see immediately that   | 
| - | {{  | + | <math>\text{cos }\pi \text{ }=-\text{1 }</math>  | 
| + | and    | ||
| + | <math>\text{sin }\pi \text{ }=0</math>.  | ||
| + | |||
[[Image:4_2_4_d.gif|center]]  | [[Image:4_2_4_d.gif|center]]  | ||
| + | |||
| + | Thus,  | ||
| + | |||
| + | |||
| + | <math>\tan \pi =\frac{\sin \pi }{\cos \pi }=\frac{0}{-1}=0</math>  | ||
Revision as of 13:15, 28 September 2008
If we use the unit circle and mark on the angle \displaystyle \pi , we see immediately that \displaystyle \text{cos }\pi \text{ }=-\text{1 } and \displaystyle \text{sin }\pi \text{ }=0.
Thus,
\displaystyle \tan \pi =\frac{\sin \pi }{\cos \pi }=\frac{0}{-1}=0

