Solution 3.4:3c
From Förberedande kurs i matematik 1
m  (Lösning 3.4:3c moved to Solution 3.4:3c: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | With the log laws, we can write the left-hand side as one logarithmic expression,  | 
| - | <  | + | |
| - | {{  | + | |
| - | {{  | + | <math>\ln x+\ln \left( x+4 \right)=\ln \left( x\left( x+4 \right) \right)</math>  | 
| - | <  | + | |
| - | {{  | + | |
| + | but this rewriting presupposes  that the expressions   | ||
| + | <math>\text{ln }x\text{ }</math>  | ||
| + | and    | ||
| + | <math>\text{ln}\left( x+\text{4} \right)</math>  | ||
| + | are defined, i.e.   | ||
| + | <math>x>0</math>  | ||
| + | and  | ||
| + | <math>x+\text{4}>0</math>. Therefore, if we choose to continue with the equation  | ||
| + | |||
| + | |||
| + | <math>\ln \left( x\left( x+4 \right) \right)=\ln \left( 2x+3 \right)</math>  | ||
| + | |||
| + | |||
| + | we must remember to permit only solutions that satisfy   | ||
| + | <math>x>0</math>  | ||
| + | (the condition   | ||
| + | <math>x+\text{4}>0</math>  | ||
| + | is then automatically satisfied).  | ||
| + | |||
| + | The equation rewritten in this way is, in turn, only satisfied if the arguments   | ||
| + | <math>x\left( x+\text{4} \right)\text{ }</math>  | ||
| + | and   | ||
| + | <math>\text{2}x+\text{3}</math>  | ||
| + | are equal to each other and positive, i.e.  | ||
| + | |||
| + | |||
| + | <math>x\left( x+\text{4} \right)=\text{2}x+\text{3}</math>  | ||
| + | |||
| + | |||
| + | We rewrite this equation as    | ||
| + | <math>x^{\text{2}}-\text{2}x-\text{3}=0</math>  | ||
| + | and completing the square gives  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \left( x+1 \right)^{2}-1^{2}-3=0 \\   | ||
| + | & \left( x+1 \right)^{2}=4 \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | which means that   | ||
| + | <math>x=-\text{1}\pm \text{2}</math>, i.e.   | ||
| + | <math>x=-\text{3}</math>  | ||
| + | and   | ||
| + | <math>x=\text{1}</math>.  | ||
| + | |||
| + | Because   | ||
| + | <math>x=-\text{3}</math>  | ||
| + | is negative, we neglect it, whilst for   | ||
| + | <math>x=\text{1}</math>  | ||
| + | we have both that   | ||
| + | <math>x>0\text{ }</math>  | ||
| + | and  | ||
| + | <math>x\left( x+\text{4} \right)=\text{2}x+\text{3}>0</math>. Therefore, the answer is  | ||
| + | <math>x=\text{1}</math>.  | ||
Revision as of 12:05, 26 September 2008
With the log laws, we can write the left-hand side as one logarithmic expression,
\displaystyle \ln x+\ln \left( x+4 \right)=\ln \left( x\left( x+4 \right) \right)
but this rewriting presupposes  that the expressions 
\displaystyle \text{ln }x\text{ }
and  
\displaystyle \text{ln}\left( x+\text{4} \right)
are defined, i.e. 
\displaystyle x>0
and
\displaystyle x+\text{4}>0. Therefore, if we choose to continue with the equation
\displaystyle \ln \left( x\left( x+4 \right) \right)=\ln \left( 2x+3 \right)
we must remember to permit only solutions that satisfy 
\displaystyle x>0
(the condition 
\displaystyle x+\text{4}>0
is then automatically satisfied).
The equation rewritten in this way is, in turn, only satisfied if the arguments \displaystyle x\left( x+\text{4} \right)\text{ } and \displaystyle \text{2}x+\text{3} are equal to each other and positive, i.e.
\displaystyle x\left( x+\text{4} \right)=\text{2}x+\text{3}
We rewrite this equation as  
\displaystyle x^{\text{2}}-\text{2}x-\text{3}=0
and completing the square gives
\displaystyle \begin{align}
& \left( x+1 \right)^{2}-1^{2}-3=0 \\ 
& \left( x+1 \right)^{2}=4 \\ 
\end{align}
which means that 
\displaystyle x=-\text{1}\pm \text{2}, i.e. 
\displaystyle x=-\text{3}
and 
\displaystyle x=\text{1}.
Because \displaystyle x=-\text{3} is negative, we neglect it, whilst for \displaystyle x=\text{1} we have both that \displaystyle x>0\text{ } and \displaystyle x\left( x+\text{4} \right)=\text{2}x+\text{3}>0. Therefore, the answer is \displaystyle x=\text{1}.
