Solution 3.3:6c
From Förberedande kurs i matematik 1
m  (Lösning 3.3:6c moved to Solution 3.3:6c: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | Before we even start thinking about transforming   | 
| - | <  | + | <math>\log _{2}</math>  | 
| - | {{  | + | and   | 
| - | {{  | + | <math>\log _{3}</math>  | 
| - | <  | + | to ln, we use the log laws  | 
| - | {{  | + | |
| - | [[  | + | |
| + | <math>\lg a^{b}=b\centerdot \lg a</math>  | ||
| + | |||
| + | |||
| + | <math>\lg \left( a\centerdot b \right)=\lg a+\lg b</math>  | ||
| + | |||
| + | |||
| + | to simplify the expression  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \log _{3}\log _{2}3^{118}=\log _{3}\left( 118\centerdot \log _{2}3 \right) \\   | ||
| + | & =\log _{3}118+\log _{3}\log _{2}3 \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | With help of the relation  | ||
| + | |||
| + | |||
| + | <math>2^{\log _{2}x}=x</math>  | ||
| + | and	  | ||
| + | <math>3^{\log _{3}x}=x</math>  | ||
| + | |||
| + | |||
| + | and taking the natural logarithm , we can express   | ||
| + | <math>\log _{2}</math>  | ||
| + | and   | ||
| + | <math>\log _{3}</math>  | ||
| + | using ln,  | ||
| + | |||
| + | |||
| + | <math>\log _{2}x=\frac{\ln x}{\ln 2}</math>  | ||
| + | 		 and          | ||
| + | <math>\log _{3}x=\frac{\ln x}{\ln 3}</math>  | ||
| + | |||
| + | |||
| + | |||
| + | The two terms log3 118 and log3 log2 3 can therefore be written as   | ||
| + | |||
| + | |||
| + | <math>\log _{3}118=\frac{\ln 118}{\ln 3}</math>  | ||
| + | and        | ||
| + | <math>\log _{3}\log _{2}3=\log _{3}\left( \frac{\ln 3}{\ln 2} \right),</math>  | ||
| + | |||
| + | |||
| + | where we can simplify the last expression further with the logarithm law, log a/b = log a – log b, and then transform   | ||
| + | <math>\log _{3}</math>  | ||
| + | to ln,  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \log _{3}\left( \frac{\ln 3}{\ln 2} \right)=\log _{3}\ln 3-\log _{3}\ln 2 \\   | ||
| + | & =\frac{\ln \ln 3}{\ln 3}-\frac{\ln 2}{\ln 3} \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | In all, we thus obtain  | ||
| + | |||
| + | |||
| + | <math>\log _{3}\log _{2}3^{118}=\frac{\ln 118}{\ln 3}+\frac{\ln \ln 3}{\ln 3}-\frac{\ln 2}{\ln 3}</math>  | ||
| + | |||
| + | |||
| + | Input into the calculator gives  | ||
| + | |||
| + | |||
| + | <math>\log _{3}\log _{2}3^{118}\approx 4.762</math>  | ||
| + | |||
| + | |||
| + | |||
| + | NOTE: the button sequence on a calculator will be:  | ||
| + | |||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \left[ 1 \right]\quad \left[ 1 \right]\quad \left[ 8 \right]\quad \left[ \text{LN} \right]\quad \left[ \div  \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ + \right] \\   | ||
| + | & \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ \text{LN} \right]\quad \left[ \div  \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ - \right]\quad \left[ 2 \right] \\   | ||
| + | & \left[ \text{LN} \right]\quad \left[ \text{LN} \right]\quad \left[ \div  \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\   | ||
| + | & \quad  \\   | ||
| + | \end{align}</math>  | ||
Revision as of 09:49, 26 September 2008
Before we even start thinking about transforming \displaystyle \log _{2} and \displaystyle \log _{3} to ln, we use the log laws
\displaystyle \lg a^{b}=b\centerdot \lg a
\displaystyle \lg \left( a\centerdot b \right)=\lg a+\lg b
to simplify the expression
\displaystyle \begin{align}
& \log _{3}\log _{2}3^{118}=\log _{3}\left( 118\centerdot \log _{2}3 \right) \\ 
& =\log _{3}118+\log _{3}\log _{2}3 \\ 
\end{align}
With help of the relation
\displaystyle 2^{\log _{2}x}=x
and	
\displaystyle 3^{\log _{3}x}=x
and taking the natural logarithm , we can express 
\displaystyle \log _{2}
and 
\displaystyle \log _{3}
using ln,
\displaystyle \log _{2}x=\frac{\ln x}{\ln 2}
		 and        
\displaystyle \log _{3}x=\frac{\ln x}{\ln 3}
The two terms log3 118 and log3 log2 3 can therefore be written as
\displaystyle \log _{3}118=\frac{\ln 118}{\ln 3}
and      
\displaystyle \log _{3}\log _{2}3=\log _{3}\left( \frac{\ln 3}{\ln 2} \right),
where we can simplify the last expression further with the logarithm law, log a/b = log a – log b, and then transform 
\displaystyle \log _{3}
to ln,
\displaystyle \begin{align}
& \log _{3}\left( \frac{\ln 3}{\ln 2} \right)=\log _{3}\ln 3-\log _{3}\ln 2 \\ 
& =\frac{\ln \ln 3}{\ln 3}-\frac{\ln 2}{\ln 3} \\ 
\end{align}
In all, we thus obtain
\displaystyle \log _{3}\log _{2}3^{118}=\frac{\ln 118}{\ln 3}+\frac{\ln \ln 3}{\ln 3}-\frac{\ln 2}{\ln 3}
Input into the calculator gives
\displaystyle \log _{3}\log _{2}3^{118}\approx 4.762
NOTE: the button sequence on a calculator will be:
\displaystyle \begin{align} & \left[ 1 \right]\quad \left[ 1 \right]\quad \left[ 8 \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ + \right] \\ & \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ - \right]\quad \left[ 2 \right] \\ & \left[ \text{LN} \right]\quad \left[ \text{LN} \right]\quad \left[ \div \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\ & \quad \\ \end{align}
