Solution 3.3:3g
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 3.3:3g moved to Solution 3.3:3g: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | Using the logarithm law,   | 
| - | <  | + | <math>\lg a-\lg b=\lg \left( \frac{a}{b} \right)</math>, the expression can be calculated as   | 
| - | {{  | + | |
| + | |||
| + | <math>\log _{3}12-\log _{3}4=\log _{3}\frac{12}{4}=\log _{3}3=1</math>  | ||
| + | |||
| + | |||
| + | Another way is to write    | ||
| + | <math>\text{12}=\text{3}\centerdot \text{4 }</math>  | ||
| + | and use the logarithm law,   | ||
| + | <math>\lg \left( ab \right)=\lg a+\lg b</math>,  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \log _{3}12-\log _{3}4=\log _{3}\left( 3\centerdot 4 \right)-\log _{3}4 \\   | ||
| + | & =\log _{3}3+\log _{3}4-\log _{3}4=\log _{3}3=1 \\   | ||
| + | \end{align}</math>  | ||
Revision as of 14:33, 25 September 2008
Using the logarithm law, \displaystyle \lg a-\lg b=\lg \left( \frac{a}{b} \right), the expression can be calculated as
\displaystyle \log _{3}12-\log _{3}4=\log _{3}\frac{12}{4}=\log _{3}3=1
Another way is to write  
\displaystyle \text{12}=\text{3}\centerdot \text{4 }
and use the logarithm law, 
\displaystyle \lg \left( ab \right)=\lg a+\lg b,
\displaystyle \begin{align}
& \log _{3}12-\log _{3}4=\log _{3}\left( 3\centerdot 4 \right)-\log _{3}4 \\ 
& =\log _{3}3+\log _{3}4-\log _{3}4=\log _{3}3=1 \\ 
\end{align}
