Solution 3.1:6a
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 3.1:6a moved to Solution 3.1:6a: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {  | + | We use the standard method and augment the fraction with the conjugate of the denominator   | 
| - | <  | + | <math>\sqrt{5}+2</math>. Then the conjugate rule gives  | 
| - | {{  | + | |
| + | |||
| + | <math>\begin{align}  | ||
| + | & \frac{\sqrt{2}+3}{\sqrt{5}-2}=\frac{\sqrt{2}+3}{\sqrt{5}-2}\centerdot \frac{\sqrt{5}+2}{\sqrt{5}+2}=\frac{\left( \sqrt{2}+3 \right)\left( \sqrt{5}+2 \right)}{\left( \sqrt{5} \right)^{2}-2^{2}} \\   | ||
| + | & =\frac{\sqrt{2}\centerdot \sqrt{5}+\sqrt{2}\centerdot 2+3\centerdot \sqrt{5}+3\centerdot 2}{5-4}=\sqrt{2\centerdot 5}+2\sqrt{2}+3\sqrt{5}+6 \\   | ||
| + | & =6+2\sqrt{2}+3\sqrt{5}+10 \\   | ||
| + | \end{align}</math>  | ||
Revision as of 08:50, 23 September 2008
We use the standard method and augment the fraction with the conjugate of the denominator \displaystyle \sqrt{5}+2. Then the conjugate rule gives
\displaystyle \begin{align}
& \frac{\sqrt{2}+3}{\sqrt{5}-2}=\frac{\sqrt{2}+3}{\sqrt{5}-2}\centerdot \frac{\sqrt{5}+2}{\sqrt{5}+2}=\frac{\left( \sqrt{2}+3 \right)\left( \sqrt{5}+2 \right)}{\left( \sqrt{5} \right)^{2}-2^{2}} \\ 
& =\frac{\sqrt{2}\centerdot \sqrt{5}+\sqrt{2}\centerdot 2+3\centerdot \sqrt{5}+3\centerdot 2}{5-4}=\sqrt{2\centerdot 5}+2\sqrt{2}+3\sqrt{5}+6 \\ 
& =6+2\sqrt{2}+3\sqrt{5}+10 \\ 
\end{align}
