Solution 3.1:3a
From Förberedande kurs i matematik 1
m  (Lösning 3.1:3a moved to Solution 3.1:3a: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | First expand the expression  | 
| - | <  | + | |
| - | {{  | + | |
| + | <math>\begin{align}  | ||
| + | & \left( \sqrt{5}-\sqrt{2} \right)\left( \sqrt{5}3\sqrt{2} \right)=\sqrt{5}\centerdot \sqrt{5}+\sqrt{5}\centerdot \sqrt{2}-\sqrt{2}\centerdot \sqrt{5}-\sqrt{2}\centerdot \sqrt{2} \\   | ||
| + | & =\sqrt{5}\centerdot \sqrt{5}-\sqrt{2}\centerdot \sqrt{2} \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | Because   | ||
| + | <math>\sqrt{5}</math>  | ||
| + | and   | ||
| + | <math>\sqrt{2}</math>  | ||
| + | are defined as those numbers which, when multiplied with themselves give   | ||
| + | <math>\text{5}</math>  | ||
| + | and   | ||
| + | <math>2</math> respectively,  | ||
| + | |||
| + | |||
| + | <math>\sqrt{5}\centerdot \sqrt{5}-\sqrt{2}\centerdot \sqrt{2}=5-2=3</math>  | ||
| + | |||
| + | |||
| + | NOTE: The expansion of     | ||
| + | <math>\left( \sqrt{5}-\sqrt{2} \right)\left( \sqrt{5}3\sqrt{2} \right)</math>  | ||
| + | can also be done directly with the conjugate rule      | ||
| + | <math>\left( a-b \right)(a+b)=a^{\text{2}}-b^{\text{2}}</math>  | ||
| + | using   | ||
| + | <math>a=\sqrt{5}</math>  | ||
| + | and   | ||
| + | <math>b=\sqrt{2}</math>.  | ||
Revision as of 12:33, 22 September 2008
First expand the expression
\displaystyle \begin{align}
& \left( \sqrt{5}-\sqrt{2} \right)\left( \sqrt{5}3\sqrt{2} \right)=\sqrt{5}\centerdot \sqrt{5}+\sqrt{5}\centerdot \sqrt{2}-\sqrt{2}\centerdot \sqrt{5}-\sqrt{2}\centerdot \sqrt{2} \\ 
& =\sqrt{5}\centerdot \sqrt{5}-\sqrt{2}\centerdot \sqrt{2} \\ 
\end{align}
Because 
\displaystyle \sqrt{5}
and 
\displaystyle \sqrt{2}
are defined as those numbers which, when multiplied with themselves give 
\displaystyle \text{5}
and 
\displaystyle 2 respectively,
\displaystyle \sqrt{5}\centerdot \sqrt{5}-\sqrt{2}\centerdot \sqrt{2}=5-2=3
NOTE: The expansion of   
\displaystyle \left( \sqrt{5}-\sqrt{2} \right)\left( \sqrt{5}3\sqrt{2} \right)
can also be done directly with the conjugate rule    
\displaystyle \left( a-b \right)(a+b)=a^{\text{2}}-b^{\text{2}}
using 
\displaystyle a=\sqrt{5}
and 
\displaystyle b=\sqrt{2}.
