Solution 3.1:2e
From Förberedande kurs i matematik 1
m  (Lösning 3.1:2e moved to Solution 3.1:2e: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | Looking first at   | 
| - | <  | + | <math>\sqrt{18}</math>  | 
| - | {{  | + | this square root expression can be simplified by writing   | 
| + | <math>\text{18}</math>  | ||
| + | as a product of its smallest possible integer factors  | ||
| + | |||
| + | |||
| + | <math>18=2\centerdot 9=2\centerdot 3\centerdot 3=2\centerdot 3^{2}</math>  | ||
| + | |||
| + | |||
| + | and then we can take the quadratic out of the square root sign by using the rule   | ||
| + | <math>\sqrt{a^{2}b}=a\sqrt{b}</math>,  | ||
| + | |||
| + | |||
| + | <math>\sqrt{18}=\sqrt{2\centerdot 3^{2}}=3\sqrt{2}</math>  | ||
| + | |||
| + | In the same way, we write    | ||
| + | <math>8=2\centerdot 4=2\centerdot 2\centerdot 2=2^{3}</math>  | ||
| + | and get  | ||
| + | |||
| + | |||
| + | <math>\sqrt{8}=\sqrt{2\centerdot 2^{2}}=2\sqrt{2}</math>  | ||
| + | |||
| + | |||
| + | All together, we get  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \sqrt{18}\sqrt{8}=3\sqrt{2}\centerdot 2\sqrt{2}=3\centerdot 2\centerdot \left( \sqrt{2} \right)^{2} \\   | ||
| + | & =3\centerdot 2\centerdot 2=12 \\   | ||
| + | &  \\   | ||
| + | \end{align}</math>  | ||
Revision as of 11:01, 22 September 2008
Looking first at \displaystyle \sqrt{18} this square root expression can be simplified by writing \displaystyle \text{18} as a product of its smallest possible integer factors
\displaystyle 18=2\centerdot 9=2\centerdot 3\centerdot 3=2\centerdot 3^{2}
and then we can take the quadratic out of the square root sign by using the rule 
\displaystyle \sqrt{a^{2}b}=a\sqrt{b},
\displaystyle \sqrt{18}=\sqrt{2\centerdot 3^{2}}=3\sqrt{2}
In the same way, we write \displaystyle 8=2\centerdot 4=2\centerdot 2\centerdot 2=2^{3} and get
\displaystyle \sqrt{8}=\sqrt{2\centerdot 2^{2}}=2\sqrt{2}
All together, we get
\displaystyle \begin{align}
& \sqrt{18}\sqrt{8}=3\sqrt{2}\centerdot 2\sqrt{2}=3\centerdot 2\centerdot \left( \sqrt{2} \right)^{2} \\ 
& =3\centerdot 2\centerdot 2=12 \\ 
&  \\ 
\end{align}
