Solution 2.3:6c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 2.3:6c moved to Solution 2.3:6c: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | If we complete the square of the expression, we have that  | 
| - | <  | + | |
| - | {{  | + | |
| + | <math>\begin{align}  | ||
| + | & x^{2}-5x+7=\left( x-\frac{5}{2} \right)^{2}-\left( \frac{5}{2} \right)^{2}+7 \\   | ||
| + | & =\left( x-\frac{5}{2} \right)^{2}-\frac{25}{4}+\frac{28}{4}=\left( x-\frac{5}{2} \right)^{2}+\frac{3}{4} \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | and because   | ||
| + | <math>\left( x-\frac{5}{2} \right)^{2}</math>  | ||
| + | is a quadratic, this term is at least equal to zero when   | ||
| + | <math>x={5}/{2}\;</math>. This shows that the polynomial's smallest value is   | ||
| + | <math>\frac{3}{4}</math>.  | ||
Revision as of 11:03, 21 September 2008
If we complete the square of the expression, we have that
\displaystyle \begin{align}
& x^{2}-5x+7=\left( x-\frac{5}{2} \right)^{2}-\left( \frac{5}{2} \right)^{2}+7 \\ 
& =\left( x-\frac{5}{2} \right)^{2}-\frac{25}{4}+\frac{28}{4}=\left( x-\frac{5}{2} \right)^{2}+\frac{3}{4} \\ 
\end{align}
and because 
\displaystyle \left( x-\frac{5}{2} \right)^{2}
is a quadratic, this term is at least equal to zero when 
\displaystyle x={5}/{2}\;. This shows that the polynomial's smallest value is 
\displaystyle \frac{3}{4}.
