Solution 2.3:5b
From Förberedande kurs i matematik 1
m  (Lösning 2.3:5b moved to Solution 2.3:5b: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | Instead of randomly trying different values of   | 
| - | <  | + | <math>x</math>  | 
| - | {{  | + | , it is better investigate the second-degree expression by completing the square:  | 
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & 4x^{2}-28x+48=4\left( x^{2}-7x+12 \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+12 \right) \\   | ||
| + | & =4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{48}{4} \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{1}{4} \right)=4\left( x-\frac{7}{2} \right)^{2}-1. \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | In the expression in which the square has been completed, we see that if, e.g.  | ||
| + | <math>x={7}/{2}\;</math>, then the whole expression is negative and equal to   | ||
| + | <math>-\text{1}</math>.  | ||
| + | |||
| + | NOTE: All values of   | ||
| + | <math>x</math>  | ||
| + | between   | ||
| + | <math>\text{3}</math>  | ||
| + | and   | ||
| + | <math>\text{4}</math>  | ||
| + | give a negative value for the  expression.  | ||
Revision as of 09:57, 21 September 2008
Instead of randomly trying different values of \displaystyle x , it is better investigate the second-degree expression by completing the square:
\displaystyle \begin{align}
& 4x^{2}-28x+48=4\left( x^{2}-7x+12 \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+12 \right) \\ 
& =4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{48}{4} \right)=4\left( \left( x-\frac{7}{2} \right)^{2}-\frac{1}{4} \right)=4\left( x-\frac{7}{2} \right)^{2}-1. \\ 
\end{align}
In the expression in which the square has been completed, we see that if, e.g.
\displaystyle x={7}/{2}\;, then the whole expression is negative and equal to 
\displaystyle -\text{1}.
NOTE: All values of \displaystyle x between \displaystyle \text{3} and \displaystyle \text{4} give a negative value for the expression.
