Solution 2.3:3e
From Förberedande kurs i matematik 1
m  (Lösning 2.3:3e moved to Solution 2.3:3e: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | In this case, we see that the left-hand side contains the factor   | 
| - | <  | + | <math>x+\text{3}</math>, which we can take out to obtain  | 
| - | {{  | + | |
| + | |||
| + | <math>\begin{align}  | ||
| + | & \left( x+\text{3} \right)\left( x-1 \right)-\left( x+\text{3} \right)\left( 2x-9 \right)=\left( x+\text{3} \right)\left( \left( x-1 \right)-\left( 2x-9 \right) \right) \\   | ||
| + | & =\left( x+\text{3} \right)\left( x-1-2x+9 \right)=\left( x+\text{3} \right)\left( -x+8 \right). \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | This rewriting of the equation results in the new equation  | ||
| + | |||
| + | |||
| + | <math>\left( x+\text{3} \right)\left( -x+8 \right)=0</math>  | ||
| + | |||
| + | |||
| + | which has the solutions   | ||
| + | <math>x=-\text{3}</math>  | ||
| + | and  | ||
| + | <math>x=\text{8}</math>.  | ||
| + | |||
| + | We check the solution   | ||
| + | <math>x=\text{8 }</math>  | ||
| + | by substituting it into the equation:  | ||
| + | |||
| + | LHS  | ||
| + | <math>=\left( 8+3 \right)\centerdot \left( 8-1 \right)-\left( 8+3 \right)\centerdot \left( 2\centerdot 8-9 \right)=11\centerdot 7-11\centerdot 7=0=</math>  | ||
| + | RHS  | ||
Revision as of 15:14, 20 September 2008
In this case, we see that the left-hand side contains the factor \displaystyle x+\text{3}, which we can take out to obtain
\displaystyle \begin{align}
& \left( x+\text{3} \right)\left( x-1 \right)-\left( x+\text{3} \right)\left( 2x-9 \right)=\left( x+\text{3} \right)\left( \left( x-1 \right)-\left( 2x-9 \right) \right) \\ 
& =\left( x+\text{3} \right)\left( x-1-2x+9 \right)=\left( x+\text{3} \right)\left( -x+8 \right). \\ 
\end{align}
This rewriting of the equation results in the new equation
\displaystyle \left( x+\text{3} \right)\left( -x+8 \right)=0
which has the solutions 
\displaystyle x=-\text{3}
and
\displaystyle x=\text{8}.
We check the solution \displaystyle x=\text{8 } by substituting it into the equation:
LHS \displaystyle =\left( 8+3 \right)\centerdot \left( 8-1 \right)-\left( 8+3 \right)\centerdot \left( 2\centerdot 8-9 \right)=11\centerdot 7-11\centerdot 7=0= RHS
