Solution 2.3:3d
From Förberedande kurs i matematik 1
m  (Lösning 2.3:3d moved to Solution 2.3:3d: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | Because both terms,   | 
| - | <  | + | <math>x\left( x+3 \right)</math>  | 
| - | {{  | + | and   | 
| + | <math>x\left( 2x-9 \right)</math>  | ||
| + | contain the factor   | ||
| + | <math>x</math>, we can take out   | ||
| + | <math>x</math> from the left-hand side  and collect together the remaining expression:  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & x\left( x+3 \right)-x\left( 2x-9 \right)=x\left( \left( x+3 \right)-\left( 2x-9 \right) \right) \\   | ||
| + | & =x\left( x+3-2x+9 \right)=x\left( -x+12 \right) \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | The equation is thus  | ||
| + | |||
| + | |||
| + | <math>x\left( -x+12 \right)=0</math>  | ||
| + | |||
| + | and we obtain directly that the equation is satisfied if either   | ||
| + | <math>x</math>  | ||
| + | or   | ||
| + | <math>-x+\text{12}</math>  | ||
| + | is zero. The solutions to the equation are therefore   | ||
| + | <math>x=0\text{ }</math>  | ||
| + | and  | ||
| + | <math>x=\text{12}</math>.  | ||
| + | |||
| + | Here, it can be worth checking that   | ||
| + | <math>x=\text{12 }</math>  | ||
| + | is a solution (the case   | ||
| + | <math>x=0</math>  | ||
| + | is obvious):  | ||
| + | |||
| + | LHS  | ||
| + | <math>=12\centerdot \left( 12+3 \right)-12\centerdot \left( 2\centerdot 12-9 \right)=2\centerdot 15-12\centerdot 15=0=</math>  | ||
| + | RHS  | ||
Revision as of 15:05, 20 September 2008
Because both terms, \displaystyle x\left( x+3 \right) and \displaystyle x\left( 2x-9 \right) contain the factor \displaystyle x, we can take out \displaystyle x from the left-hand side and collect together the remaining expression:
\displaystyle \begin{align}
& x\left( x+3 \right)-x\left( 2x-9 \right)=x\left( \left( x+3 \right)-\left( 2x-9 \right) \right) \\ 
& =x\left( x+3-2x+9 \right)=x\left( -x+12 \right) \\ 
\end{align}
The equation is thus
\displaystyle x\left( -x+12 \right)=0
and we obtain directly that the equation is satisfied if either \displaystyle x or \displaystyle -x+\text{12} is zero. The solutions to the equation are therefore \displaystyle x=0\text{ } and \displaystyle x=\text{12}.
Here, it can be worth checking that \displaystyle x=\text{12 } is a solution (the case \displaystyle x=0 is obvious):
LHS \displaystyle =12\centerdot \left( 12+3 \right)-12\centerdot \left( 2\centerdot 12-9 \right)=2\centerdot 15-12\centerdot 15=0= RHS
